TRANSFER STATION PROCESS MODEL

by

Bridget Kosmicki

JULY 1997

1. INTRODUCTION	2
2. CONCEPTUAL DESIGN	2
2.1 General	2
 2.2 TR1 Mixed Waste 2.2.1 Design 1 One-Level Loading Bay with Tipping Floor 2.2.2 Design 2 Two-Level Loading Bay with Tipping Floor 2.2.3 Design 3 Two-Level Loading Bay with Direct Tip 2.2.4 Design 4 One-Level Loading Bay with Tipping Floor And Compactor 2.2.5 Design 5 One-Level Loading Bay with Direct Tip And Compactor 	3 4 4 4 5
2.3 TR2 – Commingled Recyclables	5
2.4 TR3 Single Compartment Co-collection, Fibrous Content Material Separate	5
2.5 TR4 – Co-Collection in Three Separate Compartments	6
2.6 TR5 – Pre-sorted Recyclables	6
2.7 RT1 MSW Rail Transfer From Collection Vehicles	6
2.8 RT2 MSW Rail Transfer From Trains to Landfill (D1)	6
2.9 RT3 MSW Rail Transfer Trom Trains to Enhanced Bioreactor (D3)	7
3. GOVERNING EQUATIONS	7
3.1 Equations: TR1 Mixed Waste 3.1.1 Cost Factors 3.1.2 Life Cycle Inventory Factors	10 10 17
 3.2 Equations: TR2 Commingled Recyclables 3.2.1 Cost Factors 3.2.2 Life Cycle Inventory Factors 	23 23 33
 3.3 Equations: TR3 – ONE-Compartment Co-Collection Vehicle 3.3.1 Cost Factors 3.3.2 Life Cycle Inventory Factors 	46 46 55
 3.4 Equations: TR4 – Three Compartment Co-collection 3.4.1 Cost Factors 3.4.2 Life Cycle Inventory Factors 	56 56 58
 3.5 Equations: TR5 Presorted Recyclables 3.5.1 Cost Factors 3.5.2 Life Cycle Inventory Factors 	58 58 60
3.6 Equations: RT1 MSW Rail Transfer From Collection Vehicles 3.6.1 Cost Factors 3.6.2 Life Cycle Inventory Factors	61 61 61

3.7 Equations: RT2 MSW Rail Transfer From Rail to Landfill D1	61
3.7.1 Cost Factors	61
3.7.2 Life Cycle Inventory Factors	62
3.8 Equations: RT3 MSW Rail Transfer from Rail to Landfill D3	62
4. APPENDICES	63

1. INTRODUCTION

The objective of the transfer station process model is to calculate the cost and life-cycle inventory (LCI) for municipal solid waste (MSW) transfer stations. Costs and LCI coefficients are calculated on the basis of user-input and default design information that is described in this document. These coefficients take into account both the quantity and composition of the waste entering triangle stations. They are used in the solid waste management model to calculate the total system cost and LCI for solid waste management alternatives that involve transfer stations. Five roadway vehicle transfer station types (RT1 to RT3) are modeled.

The design basis for each of the eight transfer station types is described in Section 2 of this document. Section 3 presents the governing equations for economic and LCI parameters. Default values for input parameters are given in Appendices 1 and 2.

2. CONCEPTUAL DESIGN

2.1 GENERAL

The following general description applies to all types of transfer stations modeled. Transfer stations require a covered structure that houses collection vehicle unloading areas, trailer loading bays, refuse tipping floor space, and office space. Collection vehicles enter a transfer station via a scale house, then proceed to unloading areas. Therefore, the site is partially paved to accommodate maneuvering of both collection and transport vehicles and container storage. Facility staff operate waste handling equipment to load and distribute refuse in hauling containers and to move refuse on the tipping floor. Office space includes an employee rest area and locker rooms and an administrative work area. The loading bay area includes a trailer footprint and trailer maneuvering space. The cost of refuse drop-off areas open to the general public is included in the construction cost for each design.

The five roadway vehicle transfer stations (TR1 to TR5) are categorized by the type of material processed. Rail transfer station nodes (RT1 to RT3) consist of a transfer station for unloading mixed refuse from collection vehicles onto rail cars and receiving transfer stations located at a traditional landfill (D1) and an enhanced bioreactor landfill (D3). Table 1 identifies all transfer station types, and the remainder of this section presents the design for each type.

Table 1: Transfer Station Types

TR1	mixed MSW
TR2	commingled recyclables
TR3	separately bagged MSW and commingled recyclables in a single compartment, fiber in separate compartment
TR4	separately bagged MSW and commingled recyclables in separate compartments, fiber in separate compartment
TR5	pre-sorted recyclables
RT1	rail transfer of MSW from collection vehicles
RT2	rail transfer of MSW from trains to landfill
RT3	rail transfer of MSW from trains to enhanced bioreactor landfill

Transfer Station Material Processed

2.2 TR1 -- MIXED WASTE

For mixed waste transfer stations, the user selects from five design options summarized in Table 2. The major differences between these design options are single or multi-level design, the presence or absence of a compactor, and the type of rolling stock required. In listing rolling stock, excavator refers to a clam shell crane. With a two-level loading bay, open-top trailers are at a level below the tipping floor and may be loaded either by allowing vehicles to directly tip refuse into trailers or by rolling stock pushing refuse from the tipping floor into trailers. One-level loading bays require that refuse be lifted from a tipping floor into hauling trailers. Designs with tipping floors have reduced trailer loading time because more collection vehicles are able to unload simultaneously relative to a direct tip arrangement. Note that when a compactor option is selected a stationary compactor is used. The haul vehicle density will increase compared to densities achieved for options in which waste is compacted with an excavator.

Table 2:	Five TR1	Transfer	Station	Designs
----------	----------	----------	---------	---------

Design	Tipping floor/ direct tip	Loading Bay Type	Compaction	Loading Equipment
1	tipping floor	1 level	no	excavator front-end loader loading bay scale
2	tipping floor	2 level	no	front-end loader excavator loading bay scale
3	direct tip	2 level	no	backhoe loading bay scale
4	tipping floor	1 level	yes	front-end loader
5	direct tip	2 level	yes	backhoe

2.2.1 Design 1 -- One-Level Loading Bay with Tipping Floor

Collection vehicles unload onto a tipping floor that is sized for peak incoming traffic. The unloading area is also sized for peak traffic. An excavator (clam shell crane) is situated at an elevation approximately 5 feet above the tipping floor level to increase the operator visibility of the tipping floor while minimizing site preparation. This design incorporates the use of a loading bay scale to minimize trailer loading time. Loading bay scales ensure that regulated wheel loads are achieved during loading to avoid later time-consuming load adjustments. This design is typically used for larger capacity facilities (over approximately 500 TPD).

2.2.2 Design 2 -- Two-Level Loading Bay with Tipping Floor

As in design 1, refuse is unloaded onto a tipping floor that is sized for peak storage and loading area requirements. Unlike design 1, two-level trailer loading bays allow front-end loaders to push refuse from the tipping floor into open-top trailers on the level below. Excavators compact and redistribute refuse in trailers. Similar to Design 1, a loading bay scale is used to ensure that regulated axle loadings are met for tractor trailers.

2.2.3 Design 3 -- Two-Level Loading Bay with Direct Tip

In this option, collection vehicles unload directly into open-top trailers. Direct tip loading requires more trailer loading time than other options because loading time includes time to maneuver and unload collection vehicles. Each bay includes area requirements for collection vehicle unloading and maneuvering and for refuse storage during operational problems. A backhoe is used to compact and redistribute refuse inside the trailer and to keep the unloading area debris-free. Trailer loading bay scales are used to ensure that regulated axle loadings are met.

2.2.4 Design 4 -- One-Level Loading Bay with Tipping Floor And Compactor

For this design option, refuse is unloaded onto a tipping floor and lifted by a front-end loader into a hopper. The hopper feeds a compactor that pushes refuse into a trailer. Each loading bay has adequate space for a compactor, a trailer, and vehicle maneuvering.

2.2.5 Design 5 -- One-Level Loading Bay with Direct Tip And Compactor

Incoming collection vehicles unload directly into a hopper that feeds a compactor. The loading bay area accommodates a trailer, hopper, compactor, and space for vehicle maneuvering. Loading bays also allow for waste storage during equipment failure. Backhoes assist in loading the hopper.

2.3 TR2 – COMMINGLED RECYCLABLES

At a commingled recyclables transfer station, collection vehicles arrive with fibrous content material in a separate compartment. Fibrous content material includes all paper items that are recovered. Commingled recyclables are loaded from collection vehicles into tractor trailers. The user can select from the same five transfer station designs described for TR1 to process commingled recyclables. The percentage of broken glass is a user-input model parameter to account for unrecoverable glass at the downstream material recovery facilities. However, for all TR2 designs, fibrous content material is processed in the same manner. Commingled transfer stations have a separate unloading area where fibrous content material is tipped onto a tipping floor and loaded into hauling trailers.

2.4 TR3 -- SINGLE COMPARTMENT CO-COLLECTION, FIBROUS CONTENT MATERIAL SEPARATE

Single compartment co-collection vehicles have commingled recyclables (typically in blue bags), mixed refuse (typically in black bags), and fibrous content material (typically in blue bags) in one compartment. A single design option is provided for this facility. Co-collected blue and black bags are tipped onto a tipping floor, then pushed by front-end loaders onto a conveyer. Blue bags are manually sorted from the conveyer stream into separate piles for commingled recyclables and fibrous content material, while black bags remaining on the conveyer feed into a compactor. Each mixed refuse trailer loading bay has a compactor that is fed by a separate in-floor conveyer. Manually separated blue bags are stored until loaded into compactor hoppers with front-end loaders and backhoes. If the user does not want to include compactors for commingled recyclables, then the input values for cost and energy usage by compactors processing commingled recyclables can be set to zero. Separated blue bags containing fibrous content material are stored until loaded into hauling trailers with front-end loaders and backhoes. In summary, the facility area for TR3 consists of a tipping floor for mixed black and blue bags, separate storage areas for separated blue bags containing fibrous content material, and separate tractor trailer loading areas for all three types of material processes.

2.5 TR4 – CO-COLLECTION IN THREE SEPARATE COMPARTMENTS

Three compartment collection vehicles deliver source-separated black bags (mixed refuse), blue bags containing commingled recyclables, and blue bags containing fibrous content material to TR4. Recyclables and fibrous content materials are unloaded onto separate tipping floors and then loaded into trailers with frontend loaders. Mixed refuse is directly tipped into a compactor via a hopper. Rolling stock includes front-end loaders and backhoes.

2.6 TR5 – PRE-SORTED RECYCLABLES

A presorted recyclable transfer station is expected to operate at low capacities relative to other transfer stations. Thus, the facility is of a simpler design and includes a roof but no walls. Recyclables are unloaded into separate roll-on/roll-off containers with adequate collection vehicle maneuvering. A small backhoe is used for material handling. Full containers are removed from loading areas and stored on site until transported.

2.7 RT1 -- MSW RAIL TRANSFER FROM COLLECTION VEHICLES

Mixed refuse is transferred from collection vehicles to a rail car at RT1. The user selects from two design options for RT1 transfer stations. Both options have tipping floor storage space; however, the first is a one-level design and the second is a two-level design. For the one-level design, excavators are used to load containers. For the two-level design, refuse is pushed from the tipping floor into a preload compactor. Equipment for both designs includes front-end-loaders to push refuse on the tipping floor and container handling units (CHU) to mobilize rail containers. For either design option, transport containers are loaded, then lifted with CHUs and moved with tractors to a loading location for rail car chassis. Thus, the rail haul transfer station is not required to have onsite rail spurs.

2.8 RT2 -- MSW RAIL TRANSFER FROM TRAINS TO LANDFILL (D1)

At the landfill rail haul transfer station, a container handling unit unloads incoming containers of MSW into a storage area. Storage space accommodates the transfer station's entire capacity because the daily MSW capacity may arrive in a single shipment. Stored containers are loaded onto tractors, then hauled to the landfill working face. Tippers unload containers by inclining them greater than 60 degrees from horizontal. (The cost of the tipper is included in the transfer station cost.) The area requirements include container storage, rail car unloading space, and tractor loading space.

2.9 RT3 -- MSW RAIL TRANSFER TROM TRAINS TO ENHANCED BIOREACTOR (D3)

The design of rail transfer stations receiving containers at an enhanced bioreactor is the same as the design for RT2.

3. GOVERNING EQUATIONS

The process model equations for a specific transfer station are based on typical operating practices for that transfer station. The economic parameters include annualized construction and equipment capital costs and operating costs per ton processed at the facility. LCI parameters include energy consumption and emissions such as waterborne releases, atmospheric emissions, and solid waste production associated with energy consumption and wash water at the transfer station. The cost and LCI factors associated with transport to and from a transfer station are determined in the collection and transport process models, respectively.

This section presents equations required to calculate the cost and LCI factors for MSW and recyclables in each of the eight transfer stations modeled. Default values for each of the user-input parameters utilized in the equations below are listed in Appendix 1 along with their respective units and description. The set of input values varies slightly depending on the type of transfer station. Values referenced from other models (electric energy, collection, common) developed for this modeling effort are listed by their respective model in Tables 3 and 4. Default values for these parameters are given in Appendix 2.

Table 3:	Electric	Energy	Process	Model	References
----------	----------	--------	---------	-------	------------

Description	Variable Name	Units
Btu conversion factor	region_btu_per_elec_kwh	Btu/ kWh
Electricity Precombustion Emission Factor	emission_r_tot*	lb/kWh

**Emission* refers to atmospheric, solid waste, and water pollutants. For example, lb CO/kWh would be expressed as co_r_tot.

Table 4: Common Process Model References

Description	Variable Name ^{*,†}	Units
Density of Mixed Refuse in Collection Vehicle	D_cv	lb/cu. yd.
Loose Density of Recyclable Items	<i>item</i> _D_rcv*	lb/cu. yd.
Weight Fraction of Items in MSW	<i>item_</i> RES_WT_FRA C*	lb of item/lb total
Electricity cost	elec_c	\$/ kWh
Diesel Precombustion Energy Usage	dsl_pc_enrg	Btu/gallon
Diesel Combustion Energy Usage	dsl_enrg	Btu/gallon
Diesel Fuel Cost	dies_c	\$/gallon
Diesel Production (Precombustion) Emission	emission _d_em**	lb/1,000 gallon produced
Tipper Operating Emissions	emission _tip_em**	lb/hour
Tractor Operating Emissions	emission _tr_em**	lb/hour
Crane Operating Emissions	emission _cr_em**	lb/hour
Front-end Loader Operating Emissions	emission _fel_em**	lb/hour
Excavator Operating Emissions	emission _exc_em**	lb/hour
Backhoe Operating Emissions	emission _bh_em**	lb/hour
20-Year Global Warming Potential	GWP_emission**	greenhouse gas equivalent / lb emission

*Item designates MSW categories listed in Appendix 3. For example, the density of fibrous content material prior to compaction is fcm_d_rcv. [†]*Emission* refers to atmospheric, solid waste, and water pollutants. See example in Table 3.

Table 5 lists output value names for TR1. The variable description and name pattern also apply to transfer stations TR2 to TR5 and RT1 to RT3. In the case of transfer stations handling recyclables, TR2 to TR5, certain factors are calculated per ton of specific recyclable to reflect density differences among recyclables. In this case, the output variable names listed in Table 5 have an additional prefix. For example, particulate emissions associated with fibrous content material at TR2 would be designated as fcm tr2 pm factor.

The solid waste management model uses these parameters to evaluate whether to incorporate each transfer station in a waste management strategy. This evaluation is made in consideration of the site-specific collection, treatment, and disposal alternatives available. Parameter equations required to calculate output values for each transfer station type are presented in the sections below. Each section of transfer station equations is further divided into two subsections of calculations for cost and LCI factors. Values of variables referenced in the equations presented below that are not included in Tables 3 through 5 are presented in the input values section of Appendix 1.

Table 5: Process model Output Values

Cost Coefficient	\$/ton	TR1_COST_COEF
LCI FACTORS		
Energy Usage Factors		
Electricity Usage	Btu/ton	TR1 ELEC COEF
Diesel Usage	Btu/ton	TR1 DIES COEF
Total Energy Usage	Btu/ton	TR1 ENG TL
Water Usage Factor	,	
Facility Wash Down	gallon/ton	TR1 WR LISE FACTOR
Atmospheric Emissions	gallon/torr	
Total Particulates	lb/ton	TR1 pm FACTOR
Particulates (PM10)	lb/ton	TR1 pm10 FACTOR
Nitrogen Oxides	lb/ton	TR1 no FACTOR
Hydrocarbons (non CH ₄)	lb/ton	TR1 hc FACTOR
Sulfur Oxides	lb/ton	TR1 so FACTOR
Carbon Monoxide	lb/ton	TR1 co FACTOR
$CO_{\rm c}$ (biomass)	lb/ton	TR1 co2 bm $FACTOR$
CO_2 (non biomass)	lb/ton	$\frac{1111}{1002} = \frac{1111}{1002} = \frac{1111}{1000} = \frac{11111}{1000} = \frac{111111}{1000} = \frac{111111}{1000} = \frac{111111}{1000} = \frac{1111111}{1000} = \frac{11111111111}{1000} = 11111111111111111111111111111111111$
	lb/ton	TR1 a $ph3$ FACTOR
Lead	lb/ton	TR1 a ph FACTOR
Methane	lb/ton	TP1 cb4 EACTOR
Hydrochloric acid	lb/ton	TP1 bd EACTOR
Groophouso Cas Equivalent	aroonhouso	
Greenhouse Gas Equivalent	greennouse equivalents/ton	TRT_gwp_FACTOR
Solid Waste	equivalents/ton	
Solid Waste #1	lh/ton	
Solid Waste #1	lb/ton	
Solid Waste #2	lb/ton	TRI_SWI_FACTOR
Solid Waste #3	ID/ION	
Solid Waste #4	ID/LON	TRI_SWI_FACTOR
Solid Waste #5	id/ton	TRT_SWT_FACTOR
Waterborne Emissions		
Dissolved Solids	llh/ton	
		TR1_ds_FACTOR
Suspended Solids	lb/ton	TR1_ds_FACTOR TR1_ss_FACTOR
Suspended Solids BOD	lb/ton lb/ton	TR1_ds_FACTOR TR1_ss_FACTOR TR1_bad_FACTOR
Suspended Solids BOD COD	lb/ton lb/ton lb/ton	TR1_ds_FACTOR TR1_ss_FACTOR TR1_bad_FACTOR TR1_cad_FACTOR
Suspended Solids BOD COD Oil	lb/ton lb/ton lb/ton lb/ton	TR1_ds_FACTOR TR1_ss_FACTOR TR1_bad_FACTOR TR1_cad_FACTOR TR1_cil_FACTOR
Suspended Solids BOD COD Oil Sulfuric Acid	lb/ton lb/ton lb/ton lb/ton lb/ton	TR1_ds_FACTOR TR1_ss_FACTOR TR1_bad_FACTOR TR1_cad_FACTOR TR1_oil_FACTOR TR1_oil_FACTOR TR1_h2so4_FACTOR
Suspended Solids BOD COD Oil Sulfuric Acid Iron	lb/ton lb/ton lb/ton lb/ton lb/ton lb/ton	TR1_ds_FACTOR TR1_ss_FACTOR TR1_bad_FACTOR TR1_cad_FACTOR TR1_oil_FACTOR TR1_h2so4_FACTOR TR1_fe_FACTOR
Suspended Solids BOD COD Oil Sulfuric Acid Iron Ammonia	lb/ton lb/ton lb/ton lb/ton lb/ton lb/ton lb/ton	TR1_ds_FACTOR TR1_ss_FACTOR TR1_bad_FACTOR TR1_cad_FACTOR TR1_oil_FACTOR TR1_h2so4_FACTOR TR1_fe_FACTOR TR1_w_nh3_FACTOR
Suspended Solids BOD COD Oil Sulfuric Acid Iron Ammonia Copper	lb/ton lb/ton lb/ton lb/ton lb/ton lb/ton lb/ton lb/ton	TR1_ds_FACTOR TR1_ss_FACTOR TR1_bad_FACTOR TR1_cad_FACTOR TR1_oil_FACTOR TR1_oil_FACTOR TR1_h2so4_FACTOR TR1_fe_FACTOR TR1_w_nh3_FACTOR TR1_cu_FACTOR
Suspended Solids BOD COD Oil Sulfuric Acid Iron Ammonia Copper Cadmium	lb/ton lb/ton lb/ton lb/ton lb/ton lb/ton lb/ton lb/ton lb/ton	TR1_ds_FACTOR TR1_ss_FACTOR TR1_bad_FACTOR TR1_cad_FACTOR TR1_oil_FACTOR TR1_oil_FACTOR TR1_h2so4_FACTOR TR1_fe_FACTOR TR1_w_nh3_FACTOR TR1_cu_FACTOR TR1_cd_FACTOR
Suspended Solids BOD COD Oil Sulfuric Acid Iron Ammonia Copper Cadmium Arsenic	Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton	TR1_ds_FACTOR TR1_ss_FACTOR TR1_bad_FACTOR TR1_cad_FACTOR TR1_oil_FACTOR TR1_h2so4_FACTOR TR1_fe_FACTOR TR1_fe_FACTOR TR1_w_nh3_FACTOR TR1_cu_FACTOR TR1_cd_FACTOR TR1_as_FACTOR
Suspended Solids BOD COD Oil Sulfuric Acid Iron Ammonia Copper Cadmium Arsenic Mercury	Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton	TR1_ds_FACTOR TR1_ss_FACTOR TR1_bad_FACTOR TR1_cad_FACTOR TR1_oil_FACTOR TR1_h2so4_FACTOR TR1_h2so4_FACTOR TR1_fe_FACTOR TR1_w_nh3_FACTOR TR1_cu_FACTOR TR1_cd_FACTOR TR1_as_FACTOR TR1_hg_FACTOR
Suspended Solids BOD COD Oil Sulfuric Acid Iron Ammonia Copper Cadmium Arsenic Mercury Phosphate	Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton	TR1_ds_FACTOR TR1_ss_FACTOR TR1_bad_FACTOR TR1_cad_FACTOR TR1_oil_FACTOR TR1_h2so4_FACTOR TR1_fe_FACTOR TR1_fe_FACTOR TR1_cu_FACTOR TR1_cd_FACTOR TR1_as_FACTOR TR1_hg_FACTOR TR1_p_x_FACTOR
Suspended Solids BOD COD Oil Sulfuric Acid Iron Ammonia Copper Cadmium Arsenic Mercury Phosphate Selenium	Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton	TR1_ds_FACTOR TR1_ss_FACTOR TR1_bad_FACTOR TR1_cad_FACTOR TR1_oil_FACTOR TR1_oil_FACTOR TR1_h2so4_FACTOR TR1_fe_FACTOR TR1_fe_FACTOR TR1_cu_FACTOR TR1_cd_FACTOR TR1_as_FACTOR TR1_hg_FACTOR TR1_p_x_FACTOR TR1_se_FACTOR
Suspended Solids BOD COD Oil Sulfuric Acid Iron Ammonia Copper Cadmium Arsenic Mercury Phosphate Selenium Chromium	Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton	TR1_ds_FACTOR TR1_ss_FACTOR TR1_bad_FACTOR TR1_cad_FACTOR TR1_oil_FACTOR TR1_oil_FACTOR TR1_h2so4_FACTOR TR1_fe_FACTOR TR1_w_nh3_FACTOR TR1_cu_FACTOR TR1_cd_FACTOR TR1_as_FACTOR TR1_hg_FACTOR TR1_p_x_FACTOR TR1_se_FACTOR TR1_se_FACTOR TR1_cr_FACTOR
Suspended Solids BOD COD Oil Sulfuric Acid Iron Ammonia Copper Cadmium Arsenic Mercury Phosphate Selenium Chromium Lead	Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton	TR1_ds_FACTORTR1_ss_FACTORTR1_bad_FACTORTR1_cad_FACTORTR1_oil_FACTORTR1_h2so4_FACTORTR1_fe_FACTORTR1_w_nh3_FACTORTR1_cu_FACTORTR1_cd_FACTORTR1_as_FACTORTR1_hg_FACTORTR1_hg_FACTORTR1_p_x_FACTORTR1_se_FACTORTR1_cr_FACTORTR1_w_pb_FACTOR

3.1 EQUATIONS: TR1 -- MIXED WASTE

The following sections give equations for TR1 cost and LCI factors. To simplify the presentation, the prefix (TR1_) for variables referenced in this section have been omitted from the variable names given below.

3.1.1 Cost Factors

The following cost factor equations apply to all five TR1 design options. Total transfer station cost is obtained by summing operating costs and annualized capital costs for the facility and equipment:

EQ 3.1.1

$$TR1_COST_FACTOR = \frac{(FAC_AC + EQ_COST + OP_AC)}{ywd}$$

where TR1_COST_FACTOR = cost per ton processed at transfer station, \$/ton FAC_AC = annual capital cost for facility (EQ. 3.1.2), \$/TPD - year EQ_AC = annual equipment capital costs (EQ. 3.1.12), \$/TPD - year OP_COST = annual operating costs (EQ. 3.1.14), \$/TPD - year ywd = working days in a year, days/year

An explanation of calculations for each component of EQ 3.1.1 follows. The explanation is divided into three parts: facility capital costs, equipment capital costs, and operating costs. In the remainder of this report, similar sectioning of cost components will occur whenever it is applicable.

3.1.1.1 Facility Capital Costs

Annualized facility capital cost per ton MSW processed (FAC_AC) is determined from the sum of facility capital costs:

EQ 3.1.2

Facility Capital Cost (FAC_AC) = (Construction + Paving and Site work + Land + Engineering) X CRF

Since components of facility capital cost are dependent on the transfer station building area requirement per ton MSW processed, calculations begin by determining building area as the sum of various area requirements:

EQ 3.1.3

Facility Area per Ton MSW = Refuse storage + Vehicle unloading + Trailer loading bays + Office space

Required storage area for refuse on the tipping floor is calculated by:

EQ 3.1.4

$$STR_A = \frac{1.25 * stor * 2000 * 27}{ht * D_cv}$$

where STR_A = refuse tipping floor storage area, sq. ft./TPD
stor = storage time on the tipping floor, days
ht = height of refuse stored on the tipping floor, ft.
D_cv = density of refuse on tipping floor, lb/cu. yd.
1.25 factor to account for tipping floor expansion and vehicle manuevering,
2,000 lb/ton and 27 cu. ft./cu. yd conversion factors.

When a direct tip design option is chosen, the default value for storage time on the tipping floor is zero. For direct tip designs, refuse storage space required during equipment malfunction is included in vehicle unloading areas.

Collection vehicle unloading area per ton processed is determined by:

EQ 3.1.5

where CV_UL_A= area required for collectionvehicle unloading, sq.ft./TPD single_cv_ul_a= area required for a single collectionvehicle to unload, sq.ft. cv_ul_hr = time to unload a collectionvehicle, hours peak_fct= peak collectionvehicle arrival factor, no units EWh_d = effective work day length, workday less breaks and stoppages, hour/day cv_load = average weight of MSW in single collectionvehicle, lb 2,000 lb/ton conversionfactor The peak collection vehicle arrival factor is a factor that when multiplied by the average hourly arrival rate gives the peak arrival rate during the day.

Loading bay area per ton of MSW processed is determined by:

EQ 3.1.6

where LD_A= area required for trailer loading, sq.ft./TPD ld_bay_a= trailer loading area requirement, sq.ft. load_hr = time to load a trailer, hours tr_rep_hr = time to replace a full trailer, hours Ewh_d = effective working day length, hours/day tr_vol_cap= transfer trailer capacity, cu.yd. tr_d = density of MSW in transfer vehicle, lb/cu.yd. 2,000 lb/ton conversion factor

Trailer loading time (load_hr) is a function of the transfer station design option selected. For designs with a tipping floor, trailer loading time designates the time for continual loading from the tipping floor. For designs with direct tip, trailer loading time designates time with peak collection vehicle traffic. The office area rate is applied to the sum of the area requirements calculated above to obtain the total facility area:

EQ 3.1.7

FAC_A=(STR_A+LD_A+CV_UL_A)*(1+off_area_r)

where FAC_A= total facility area, sq.ft./TPD
STR_A= refuse storage area, sq.ft./TPD
LD_A= trailer loading area, sq.ft./TPD
CV_UL_A= collection vehicle unloading area, sq.ft./TPD
off_area_r = fraction of facility attributed to office space, no units

Once area is calculated, then components of facility capital cost (EQ 3.1.2) can be determined. The first component, construction cost, is calculated as:

EQ 3.1.8

const_C = FAC_A * const_c

where const_C = facility construction cost, \$/TPD FAC_A = facility area (EQ 3.1.7), sq.ft./TPD const_c = construction cost rate, \$/sq.ft.

Paving and site work costs are calculated as:

EQ 3.1.9

sitew_C = FAC_A * land_area_r * sitew_c

where sitew_C = paving and sitework cost, \$/TPD
FAC_A = facility area per daily capacity (EQ 3.1.7), sq.ft./TPD
land_area_r = land to building area ratio, sq.ft./sq.ft.
sitew_c = paving and sitework cost rate, \$/sq.ft.

The basis for default values for construction cost rates and the paving and site work rates are provided in Appendix 4. The paving and site work rate accounts for earthwork, paving, drainage, and fencing for the entire site (including vehicle maneuvering space and roadways throughout the facility). The site area requirement is based on a land-to-building area ratio. The basis for the default value of land-to-building area ratio is also given in Appendix 4.

The contribution of engineering, permitting, and contingency to capital cost of the facility is calculated by:

EQ 3.1.10

eng_C = (const_C + sitew_C) * eng_r

where eng_C = capital cost for engineering, permitting and contigency of facility construction, \$/TPD
const_C = capital cost of facility construction, \$/TPD
sitew_C = capital cost of paving and sitework, \$/TPD
eng_r = engineering, permitting and contingency cost as a fraction of construction and
sitework costs

The land acquisition rate multiplied by land requirement gives the capital cost for land:

EQ 3.1.11

$$land_C = \frac{FAC_A * land_area_r * land_c}{43,561}$$

where land_C = capital cost of land, \$/TPD
FAC_A = facility area per daily capacity (EQ 3.1.7), sq. ft./TPD
area_r = building to land ratio, sq. ft./sq. ft.
land_c = land acquisistion rate, \$/acre
and 43,560 sq. ft/acre

The capital costs determined by EQ 3.1.8 to EQ 3.1.11 are summed and annualized over the facility life to give annual cost (FAC_AC).

3.1.1.2 Equipment Capital Costs

Equipment capital costs (EQ_AC) that include purchase and installation costs depend on the rolling stock and compactors required for a given transfer station design:

EQ 3.1.12

 $EQ_AC = RS_TC + COMP_TC$

where EQ_AC= annual equipment capital cost per facility daily capacity, \$/TPD - year RS_TC = rolling stock capital cost (EQ 3.1.13), \$/TPD - year COMP_TC= compactor capital cost (as in EQ 3.1.13), \$/TPD - year

Rolling stock capital cost is determined by:

EQ 3.1.13

RS_TC = (RS_cost * (1 + eq_inst_r)) * CRF

where RS_TC = rolling stock purchase and installation costs, \$/TPD - year RS_cost = cost of transfer station rolling stock, \$/TPD eq_inst_r = installation cost as a fraction of purchase price (same rate for all equipment)

The basis for default rolling stock cost (RS_cost) is given in Appendix 5. Default values are

determined from a linear regression of rolling stock costs for a range of facility capacities for each transfer

station design modeled. The cost for compactors is determined in a similar manner based on the capital cost

per ton for compactors (COMP_cost). The basis for default values for compactor cost are also given in Appendix 5.

3.1.1.3 Operating Costs

Facility operation costs include annual costs for labor, energy usage, and maintenance for building and equipment. The components of operating costs are determined on an annual basis in terms of tons processed per day.

EQ 3.1.14

$$\begin{array}{ccc} & Equipment and Facility & Equipment and Facility \\ OP_AC = WG_AC + & \sum\limits_{i} E_AC & + & \sum\limits_{i} M_AC \\ & & i & & i \end{array}$$

where OP_AC = total annual cost per ton processed per day, \$/TPD - year
WG_AC = labor and management annual costs, \$/TPD - year
E_AC = rolling stock, compactor and facility annual energy costs, \$/TPD - year
M_AC = rolling stock, compactor and facility annual maintenance costs, \$/TPD - year

Calculation of labor costs is determined by:

EQ 3.1.15

WG_AC = op_wage * ywd * op_req * (1 + mang_r)

where WG_AC = labor annual wage cost, \$/TPD - year
op_wage = equipment operator wages, \$/hour
op_req = operator labor hours required per ton, hour/day/T PD
ywd = working days in a year, day/year
mang_r = management rate as a fraction of labor cost, no units

The basis for default values of equipment operator requirement (op_req) is a regression analysis of the equipment operator requirement as a function of transfer station capacity. The regression analysis is presented in Appendix 5 for each transfer station design modeled.

Energy costs for diesel-powered rolling stock are calculated by:

EQ 3.1.16

RS_E_AC = dies_c * rs_e * ywd

where	RS_E_AC = rolling stock annual energy cost, \$/TPD - year
	dies_c=cost of diesel fuel from common model, \$/gallon
	rs_e = diesel fuel requirement, gallon/ton MSW processed
	ywd=work days in a year, day/year

The fuel requirement for rolling stock (rs_e) is determined from a regression analysis of fuel requirements for transfer stations of varying capacities. The basis for default values is presented in Appendix 5 for each transfer station design.

For electric-powered compactors, the energy cost is:

EQ 3.1.17

COMP_E_AC = elec_c * comp_e * ywd

Facility energy cost is calculated by:

EQ 3.1.18

FAC_E_AC = fac_e * FAC_A * elec_c * ywd

where FAC_E_AC = facility energy cost, \$/TPD - year
fac_e = facility electricity usage, kWh/sq.ft - day
FAC_A = area required for transfer station (EQ.3.1.7), sq.ft./TPD
elec_c = electricity cost from common model, \$/kWh
ywd = yearly working days, day/year

The annual cost per ton per day for facility maintenance is a user-entered or a default value; therefore, calculations are not required. Rolling stock maintenance costs are calculated by:

EQ 3.1.19

 $EQ_M_AC = eq_mc^*(RS_TC + COMP_TC)$

where EQ_M_AC = annual equipment maintanace cost, \$/TPD - year eq_mc = annual equipment maintenance cost as percent of equipment cost, fraction/year RS_cost = capital cost of rolling stock, \$/TPD COMP_cost = capital cost of compactor, \$/TPD

3.1.2 Life Cycle Inventory Factors

There are three types of LCI factor equations presented in the following sections: energy usage, water usage, and emissions (including atmospheric releases, solid waste production, and waterborne releases). In the remainder of this document, similar sectioning of LCI factor equations occurs whenever it is applicable.

3.1.2.1 Energy Usage

Total energy usage is the sum of electricity and diesel required:

EQ 3.1.20

TR1_TL_ENG_FACTOR=TR1_ELEC_FACTOR+TR1_DIES_FACTOR

where TR1_TL_ENG_FACTOR= total energy per ton of refuse processed by the facility, Btu/ton TR1_ELEC_FACTOR= total electric energy per ton processed (EQ. 3.1.21), Btu/ton TR1_DIES_FACTOR= total diesel energy per ton processed (EQ. 3.1.22), Btu/ton

Electric energy usage is determined by the following summation:

EQ 3.1.21

TR1_ELEC_FACTOR= (fac_e*FAC_A + comp_e) * region_btu_per_elec_kwh

where TR1_ELEC_FACTOR= electric energy use per ton processed, Btu/ton
fac_e = building electric energy requirement, kWh/sq. ft./day
FAC_A = building area requirement (EQ. 3.1.7), sq. ft./TPD
comp_e = compactor electric energy requirement, kWh/ton
region_btu_per_elec_kwh= energy usage per kWh produced (electric energy module),Btu/kWh

Diesel fuel usage includes energy from precombustion (generation) and combustion of diesel required for rolling stock operation:

EQ 3.1.22

TR1_DIES_FACTOR = DIES_COMB + DIES_PREC

where TR1_DIES_FACTOR= total energy used by diesel powered equipment per ton processed, Btu/ton DIES_COMB= energy usage in combustion of diesel per ton refuse processed, Btu/ton DIES_PREC = energy usage in generation of diesel per ton refuse processed, Btu/ton

Precombustion energy usage is found from total gallons per ton utilized:

EQ 3.1.23

DIES_PREC = rs_e * dsl_pc_enrg

where DIES_PREC= energy use in diesel fuel generation, Btu/ton
rs_e= rolling stock diesel use, gallon/ton
dsl_pc_enrg= energy required to produce fuel, Btu/gallon fuel

Default values for energy usage requirements (rs_e) are obtained from linear regressions of fuel requirement versus facility capacity. The fuel requirement is calculated based on the quantity and types of rolling stock required for each transfer station design. Appendix 5 presents the basis for default values of fuel usage. Energy consumed by rolling stock combustion of diesel also depends on the energy usage factor:

EQ 3.1.24

DIES_COMB= rs_e * dsl_enrg

where DIES_COMB = diesel energy used by rolling stock, Btu/ton rs_e = rolling stock diesel use, gallon/ton dsl_enrg = energy of the fuel, Btu/gallon fuel

3.1.2.2 Water Usage

Water usage for transfer station washdown is found by:

EQ 3.1.25

where TR1_WR USE_FACTOR= transfer station wash water use, gallon/ton of refuse processed wash_r = washdown frequency, wash/month fac_wr = washwater required, gallon/sq.ft. FAC_A= building area per facility capacity (EQ 3.1.7), sq.ft./TPD ywd = yearly work days, day/year and 12 months/year conversion factor

3.1.2.3 Emissions

3.1.2.3.1 Atmospheric Releases

Atmospheric releases for each of the twelve pollutants listed in Table 5 are found by summing sources in facility operation. The emission sources are the same for each atmospheric pollutant. For particulate matter the summation is:

EQ 3.1.26

TR1_pm_FACTOR = pm_elec + pm_rs_pc + pm_rs_c

```
TR1_pm_FACTOR = total particulate emissions, lb/ton MSW processed

pm_elec = total particulate matter released in electricity consumption, lb/ton MSW processed

pm_rs_pc = total particulate matter released in production of diesel used by rolling stock,

lb/ton MSW processed

pm_rs_c = total particulate matter released in combustion of diesel by rolling stock,

lb/ton MSW processed
```

Electricity generation particulate matter emissions are found by:

EQ 3.1.27

pm_elec = (comp_e + fac_e * FAC_A) * PM_r_tot

where pm_elec = electricity generation particulate matter emission, lb/ton of refuse comp_e=compactor energy usage, kWh/ton MSW processed FAC_A=building area requirement (EQ.3.1.7), sq.ft/TPD fac_e=building energy usage, kWh/sq.ft/day PM r tot = particulate matter factor (electric energy model), lb/kWh The emission factor (PM_r_tot) accounts for the emission of particulate matter resulting from the production of electricity. For diesel generation or precombustion emissions, the calculation is:

EQ 3.1.28

$$pm_rs_pc = \frac{rs_e * pm_dies_pc_em}{1,000}$$

where pm_rs_pc = particulate matter emitted in diesel generatation, lb/ton refuse processed
 rs_e = rolling stock diesel usage, gallon/ton refuse processed
 pm_dies_pc_lb_gal = diesel precombustion pm emissions (common model), lb/1,000 gallon

The atmospheric emissions from rolling stock operation [*emission*_rs_c for (example, pm_rs_c)] are user-input or default values determined from a regression analysis of the equipment emissions for a range of transfer station capacities. (Appendix 5).

Greenhouse gas equivalents are calculated with factors for the 20-year global warming potential for relevant pollutants:

EQ 3.1.29

TR1_gwp_FACTOR=TR1_co2biomass_FACTOR * GWP_CO2biomass + TR1_co2fossil_FACTOR * GWP_CO2fossil

- + TR1_ch4_FACTOR * GWP_CH4
- + TR1_nox_FACTOR * GWP_NOX
- + TR1_hc_FACTOR * GWP_HC

3.1.2.3.2 Solid Waste Production

The transfer station process model also accounts for solid waste production associated with MSW processing at TR1. For a given solid waste (SW1), the total production is:

EQ 3.1.30

TR1_sw1_FACTOR = sw1_elec + sw1_rs_pc

TR1_sw1_FACTOR = total SW1 production, lb/ton refuse processed sw1_elec = solid waste produced by electrici tygeneration (EQ. 3.1.31), lb/ton MSW processed sw1_rs_pc = solid waste produced in production of diesel used by rolling stock (EQ. 3.1.32) lb/ton MSW processed

Solid waste produced in electricity generation is:

EQ 3.1.31

Sw1_elec = (comp_e + fac_e * FAC_A) * SW1_r_tot

where	sw1_elec	=	solid waste (SW1) produced in electricity generation,		lb/ton of refuse
	comp_e	=	compactor energy usage,	kWh/ton MSW processed	
	fac_e	=	building energy usage,	kWh/sq. ft/day	
	FAC_A	=	building area requirement,	sq. ft./TPD	
	SW1_r_tot	=	solid waste (SW1) factor (e	electric energy module),	lb/kWh

For diesel generation or precombustion emissions, the calculation is:

EQ 3.1.32

$$sw1_rs_pc = \frac{rs_e * sw1_dies_pc_em}{1,000}$$

where	sw1_rs_pc	=	solid waste (SW1) produced ir	n diesel generation,	lb/ton refuse processed	
	rs_e	=	rolling stock diesel usage,	gallon/ton refuse process	ed	
sw1_	_dies_pc_em	=	diesel precombustion solid wa	ste (SW1) production (com	nmon module),	lb/1000 gallon

3.1.2.3.3 Waterborne Releases

Equations for dissolved solids waterborne releases are given to exemplify waterborne release equations. Total waterborne releases are the sum of releases from facility washdown and energy generation:

EQ 3.1.33

TR1_ds_FACTOR = ds_wwr + ds_elec + ds_rs

For facility wash water, dissolved solids are calculated as:

EQ 3.1.34

where ds_wwr = dissolved solids from wash water, lb/ton of refuse processed TR1_WR USE_FACTOR = wash water use, gallon/ton DS_wwr_r = wash water dissolved solids, lb/gallon

For electricity generation, dissolved solids are calculated with a factor that accounts for the releases associated with electricity production:

EQ 3.1.35

ds_elec = (fac_e * FAC_A + comp_e) * DS_elec_lb_KWH

where ds_elec = waterborne dissolved solids due to electricity generation, lb/ton refuse processed
fac_e = facility energy usage, kWh/sq.ft./day
FAC_A = building area requirement (EQ 3.1.7), sq.ft./TPD
comp_e = compactor energy usage, KWh/ton

DS_elec_lb_KWH = dissolved solids emissions from electricity generation (from electricity model), lb/kWh

For diesel precombustion, dissolved solids are:

EQ 3.1.36

$$ds_rs = \frac{rs_e * ds_dies_pc_em}{1000}$$

where	ds_rs	=	dissolved solids released in generation of diesel used by rolling stock,			lb/ton MSW	
	ds_dies	=	dissolved solids emissions due to diesel generation,		MSW	processed	
	rs_e	=	rolling stock diesel usage, gallon/ton refu	ise processed			
ds_dies_pc_em = diesel precombustion dissolved solids release factor (from common),							
		1	b/1, 000 gallon diesel				

3.2 EQUATIONS: TR2 -- COMMINGLED RECYCLABLES

Equations to derive cost and LCI factors for TR2 are presented in this section. To simplify the presentation, the prefix (TR2_) has been omitted from variable names given in this section.

3.2.1 Cost Factors

The following facility parameter equations to calculate cost factors apply to all five TR2 design options. Separate cost factors are calculated for each of the recyclable items listed in Appendix 3. The costs for all recyclable components except fibrous content material are calculated in Section 3.2.1.1 (Equations 3.2.1 to 3.3.20). Fibrous content material is delivered in a separate compartment and is loaded directly into roll-on/roll-off containers. Equations for fibrous content material cost determination are presented in Section 3.2.1.2.

3.2.1.1 Commingled Recyclables (Excluding Fibrous Content Material)

For all recyclables except fibrous content material, volume-specific cost factors along with itemspecific densities are utilized to calculate weight-based cost factors: *item_TR2_COST_FACTOR* = $\frac{r_TR2_COST_CY*2000}{item_D_rcv*item_CF}$

where item_TR2_COST_FACTOR = cost per ton of individual recyclable item processed, \$/ton
r_TR2_COST_CY = cost per volume processed calculated below, \$/cubic yard
item_D_rcv = item specific loose density from common model, lb/cubic yard
item_CF = compaction factor for item, compacted density/loose density
2,000 lb/ton conversion factor.

Total transfer station cost per cubic yard of material is obtained by summing operating costs and

annualized capital costs for the facility and equipment:

EQ 3.2.2

r_TR2_COST_CY = (r_FAC_AC+r_EQ_COST+r_OP_AC)/ywd

where r_TR2_COST_CY = cost per cubic yard processed at transfer station, \$/cubic yard r_FAC_AC = annual capital cost for facility(EQ.3.2.3), \$/CYPD - year r_EQ_AC = annual equipment capital costs (EQ.3.2.13), \$/CYPD - year r_OP_COST = annual operating costs (EQ.3.2.15), \$/CYPD - year ywd = working days in a year, days/year

An explanation of calculations for each component of EQ 3.2.2 follows.

3.2.1.1.1 Facility Capital Costs for Commingled Recyclables

Annualized facility capital cost per cubic yard of material processed (r_FAC_AC) is determined from

the sum of facility capital costs:

EQ 3.2.3

Facility Capital Cost(r_FAC_AC) = (Construction + Paving and Site work + Land + Engineering) X CRF

Since components of facility capital cost are obtained by multiplying unit costs such as land acquisition and construction rates by facility area per ton of recyclables processed, the facility area as the sum of various area requirements is calculated:

EQ 3.2.4

Recyclables Facility Area per Ton = Recyclable storage + Vehicle unloading + Trailer loading bays + Office space

Required storage area for commingled recyclables on the tipping floor is calculated by:

EQ 3.2.5

$$r_STR_A = \frac{1.25 * r_stor * 27}{r_ht}$$

where r_STR_A = recyclable tipping floor storage area, sq. ft./CYPD
r_stor = storage time on the tipping floor, days
r_ht = height of refuse stored on the tipping floor, ft.
1.25 factor to account for tipping floor expansion and vehicle manuevering
and 27 cu. ft./cu. yd conversion factors.

When a direct tip design option is chosen, the default value for storage time on the tipping floor is zero. For direct tip designs, refuse storage space required during equipment malfunction is included in vehicle unloading areas.

Collection vehicle unloading area per cubic yard processed is determined by:

EQ 3.2.6

where

e r_CV_UL_A= area required for collection vehicle unloading, sq.ft./CYPD

 $r_single_cv_ul_a=$ area required for a single collection vehicle to unload, sq. ft.

r_cv_ul_hr = time to unload a collection vehicle, hours

peak_fct= peak collectionvehicle arrival rate, no units

EWh_D= effective work day length, workday less breaks and stoppages, hour/day

r_cv_vol=averagevolume of commingled recyclables compartment in single collection vehicle, cubic yards

Loading bay area per cubic yard of recyclable processed is determined by:

EQ 3.2.7

where r_LD_A = area required for trailer loading, sq.ft./CYPD
r_ld_bay_a = trailer loading area requirement, sq.ft.
r_load_hr = time to load a trailer, hours
r_tr_rep_hr = time to replace a full trailer, hours
Ewh_d = effective working day length, hours/day
r_tr_vol_cap = transfer trailer capacity, cu.yd.

The time to load trailers is a function of the design option chosen. For designs with a tipping floor, trailer loading time is the trailer loading time for continual loading from the tipping floor. For designs with direct tip, trailer loading time is the loading time with peak collection vehicle traffic.

The office area rate is applied to the sum of the area requirements calculated above to obtain the total facility area:

EQ 3.2.8

r _ FAC _ A=(r_STR_A+r_LD_A+r_CV_UL_A)*(1+off_area_r)

where r_FAC_A=total facility area, sq.ft./CYPD
r_STR_A=refuse storage area, sq.ft./CYPD
r_LD_A=trailer loading area, sq.ft./CYPD
r_CV_UL_A=collection vehicle unloading area, sq.ft./CYPD
off_area_r = fraction of facility attributed to office space, no units

Once area is calculated, then components of facility capital cost (EQ 3.2.3) can be determined. The first component, construction cost, is calculated as:

EQ 3.2.9

r_const_C=r_FAC_A*const_c

where r_const_C = facility construction cost, \$/CYPD
r _ FAC _ A = facility area (EQ 3.2.8), sq.ft./CYPD
const_c = construction cost rate, \$/sq.ft.

Paving and site work costs are calculated as:

EQ 3.2.10

r_sitew_C=r_FAC_A*land_area_r*sitew_c

where r_sitew_C = paving and sitework cost, \$/CYPD

r _ FAC _ A = facility area per daily capacity (EQ 3.2.8), sq. ft./CYPD land_area_r = land to building area ratio, sq. ft. land/sq. ft. building sitew_c = paving and sitework cost rate, \$/sq. ft.

The basis for default values for construction rates, paving, and site work and land-to-building area ratio are provided in Appendix 4. The paving and site work rate accounts for earthwork, paving, drainage, and fencing for the entire site including vehicle maneuvering space and roadways throughout the facility. The

site area requirement is based on a land-to-building area ratio. The basis for the default value of land-tobuilding area ratio is also given in Appendix 4.

The contribution of engineering, permitting, and contingency to capital costs for the facility is determined by:

EQ 3.2.11

r _ eng _ C = (r_const_C + r_sitew_C)* eng_r

where r_eng_C = capital cost for engineering, permitting and contingency, \$/CYPD
r_const_C = capital cost of facility construction, \$/CYPD
r_sitew_C = capital cost of paving and sitework, \$/CYPD
eng_r = engineering, permitting and contingecy cost as a fraction of construction and sitework costs

The land acquisition rate multiplied by land requirement gives the capital cost for land:

EQ 3.2.12

$$r_land_C = \frac{r_FAC_A*land_area_r*land_c}{43,561}$$

where r_land_C = capital cost of land, \$/CYPD

r _ FAC _ A= facility area per daily volume capacity (EQ 3.2.8), sq. ft./CYPD area_r = building to land ratio, sq. ft./sq. ft. land_c = land acquisistion rate, \$/acre and 43,560 sq. ft/acre

The capital costs determined by EQ 3.2.9 to EQ 3.2.12 are summed and annualized over the facility life to give annual cost (r_FAC_AC).

3.2.1.1.2 Equipment Capital Costs for Commingled Recyclables

Equipment capital cost (r_EQ_AC) that includes purchase and installation costs depends on the rolling stock and compactors required for a given transfer station design:

EQ 3.2.13

 $r _ EQ _ AC = r_RS _ TC + r_COMP_TC$

where r_EQ_AC = annual equipment capital cost per facility daily capacity,\$/CYPD - year r_RS_TC = rolling stock capital cost (EQ 3.2.14),\$/CYPD - year r_COMP_TC= compactor capital cost(as in EQ 3.2.14),\$/CYPD - year

Rolling stock capital cost is determined by:

EQ 3.2.14

 $r_RS_TC = (r_RS_cost * (1 + eq_inst_r)) * CRF$

where r_RS_TC = rolling stock purchase and installation costs, \$/CYPD - year
r_RS_cost = cost purchasing transfer station rolling stock, \$/CYPD
eq_inst_r = installation cost as a fraction of purchase price (same rate for all equipment)

The basis for default rolling stock cost (r_RS_cost) is given in Appendix 5. Default values are determined from a linear regression of rolling stock costs as a function of facility capacity for each transfer station design modeled. The cost for compactors and hoppers are determined in a similar manner based on the capital cost per cubic yard of material processed for compactors (r_COMP_cost). The basis for default values for compactor cost are also given in Appendix 5.

3.2.1.1.3 Operating Costs for Commingled Recyclables

Facility operation costs include annual costs for labor, energy usage, and maintenance for building and equipment.

EQ 3.2.15

$$r_OP_AC = r_WG_AC + \sum_{i}^{Equipment and Facility} r_E_AC + \sum_{i}^{Equipment and Facility} r_AC$$

where r_OP_AC= total annual cost per cubic yard processed per day, \$/CYPD - year r_WG_AC= labor and management annual costs, \$/CYPD - year r_E_AC= rolling stock, compactor and facility annual energy costs, \$/CYPD - year r_M_AC= rolling stock, compactor and facility annual maintenance costs, \$/CYPD - year Calculation of labor costs is determined by:

EQ 3.2.16

r_WG_AC = op_wage * ywd * r_op_req * (1+ mang_r)

where r_WG_AC = labor annual wage cost, \$/CYPD - year op_wage = equipment operator wages, \$/hour r_op_req = operator labor hours required per cubic yard, hour/day/CYPD ywd = working days in a year, day/year mang_r = management rate as a fraction of labor cost, no units

The basis for default values of equipment operator requirement (r_op_req) is a regression analysis of the equipment operator requirement for various sizes of transfer stations. The regression analysis is presented in Appendix 5 for each transfer station design modeled.

Energy costs for diesel-powered rolling stock are calculated by:

EQ 3.2.17

where

r_RS_E_AC = rolling stock annual energy cost, \$/CYPD - year dies_c = cost of diesel fuel from common module, \$/gallon r_rs_e = diesel fuel requirement, gallon/CY material processed ywd = work days in a year, day/year

The fuel requirement for rolling stock (r_rs_e) is determined from a regression analysis of fuel requirements for various sizes of transfer stations. The basis for default values is presented in Appendix 5 for each transfer station design.

For electric powered compactors, the energy cost is:

EQ 3.2.18

 $r_COMP_E_AC = elec_c * r_comp_e * ywd$

Facility energy cost is calculated by:

EQ 3.2.19

r_FAC_E_AC = fac_e * r_FAC_A * elec_c * ywd

where r_FAC_E_AC = facility energy cost, \$/CYPD - year
fac_e = facility electricity usage, kWh/sq.ft - day
r_FAC_A = area required for transfer station (EQ.3.2.8), sq.ft./CYPD
elec_c = electricity cost from common model, \$/kWh
ywd = yearly working days, day/year

The annual cost per ton per day for facility maintenance is a user-entered or a default value;

therefore, calculations are not required. Rolling stock maintenance costs are calculated by:

EQ 3.2.20

 $r _EQ_M_AC = eq_mc * (r_RS_cost + r_COMP_cost)$

where r_EQ_M_AC = annual equipment maintanace cost, \$/CYPD - year eq_mc = annual equipment maintenance cost as fraction of equipment cost, 1/year r_RS_cost = capital cost of rolling stock , \$/CYPD r_COMP_cost = capital cost of compactor, \$/CYPD

3.2.1.2 Cost Factor for Fibrous Content Material

In TR2, fibrous content material is delivered in a separate compartment of the commingled-

recyclable vehicle. Fibrous content material has a separate tipping floor as described in Section 2.3. Fibrous content material cost factors include costs given below:

EQ 3.2.21

fcm_TR2_COST_FACTOR =
$$\frac{(fcm_FAC_AC + fcm_EQ_COST + fcm_OP_AC)}{ywd}$$

where fcm_TR2_COST_FACTOR= cost per ton processed at transfer station, \$/ton fcm_FAC_AC= annual capital cost for facility (EQ. 3.2.22), \$/TPD - year fcm_EQ_AC= annual equipment capital costs (EQ. 3.1.12), \$/TPD - year fcm_OP_COST = annual operating costs (EQ. 3.1.14), \$/TPD - year ywd = working days in a year, days/year

An explanation of calculations for each component of EQ 3.2.21 follows.

3.2.1.2.1 Facility Capital Costs for Fibrous Content Material

Annualized facility capital cost per ton fibrous content material processed (FCN_FAC_AC) is determined from the sum of facility capital costs:

EQ 3.2.22

Fibrous Content Material Facility Annual Cost(FCM_FAC_AC) = (Construction + Paving and Site work + Land + Engineering) X CRF

To calculate facility capital costs, the area required for fibrous content material processing is

determined. Facility area attributed to fibrous content material processing includes the fibrous content

material tipping floor, collection vehicle unloading area, trailer loading bay area, and office space:

EQ 3.2.23

Recyclables Facility Area per Ton = Tipping floor + Vehicle unloading + Trailer loading bays + Office space

Required storage area for fibrous content material on the tipping floor is calculated by:

EQ 3.2.24

 $fcm_STR_A = \frac{1.25 * fcm_stor * 27}{fcm_ht}$

Collection vehicle unloading area per cubic yard processed is determined by:

EQ 3.2.25

fcm_CV_UL_A =
$$\frac{fcm_single_cv_ul_a^* fcm_cv_ul_hr * peak_fct}{EWh_d^* fcm_cv_vol}$$

where	fcm_CV_UL_A = area required for collectionvehicle unloading, sq.ft./CYPD					
	fcm_single_cv_ul_a= area required for a single collection vehicle to unload, sq.ft.					
	fcm_cv_ul_hr = time to unload a collection vehicle, hours					
	peak_fct= peak collection vehicle arrival rate, no units					
	EWh_D= effective work day length, workday less breaks and stoppages, hour/day					
	fcm_cv_vol=averagevolume of commingled recyclables compartmen in single collection vehicle,					
	cubic yards					

Loading bay area per cubic yard of fibrous content material processed is determined by:

EQ 3.2.26

where fcm_LD_A= area required for trailer loading, sq.ft./CYPD
fcm_ld_bay_a = trailer loading area requirement, sq.ft.
fcm_load_hr = time to load a trailer, hours
fcm_tr_rep_hr = time to replace a full trailer, hours
Ewh_d = effective working day length, hours/day
fcm_tr_vol_cap = transfer trailer capacity, cu.yd.

The office area rate is applied to the sum of the area requirements calculated above to obtain the total facility area:

EQ 3.2.27

fcm_FAC_A=(fcm_STR_A+ fcm_LD_A+ fcm_CV_UL_A)*(1+ off_area_r)

where fcm_FAC_A= total facility area, sq.ft./CYPD
fcm_STR_A= refuse storage area, sq.ft./CYPD
f_LD_A= trailer loading area, sq.ft./CYPD
fcm_CV_UL_A= collection vehicle unloading area, sq.ft./CYPD
off area r = fraction of facility attributed to office space, no units

Once the fibrous content material facility area is known, construction, paving and site work, land acquisition, and engineering costs are determined as for TR1 (EQ 3.1.8 through EQ 3.1.11).

3.2.1.2.2 Equipment Capital Costs for Fibrous Content Material

Capital costs for rolling stock required to process fibrous content material (fcm_EQ_AC) are

determined as in TR1 with EQ 3.1.13.

3.2.1.2.3 Operating Costs for fibrous Content Material

Operating costs (fcm_OP_AC) include the cost of labor, energy, and maintenance as determined by the equations for commingled recyclables (EQ 3.1.15 through EQ 3.1.19).

3.2.2 Life Cycle Inventory Factors

Similar to TR2 cost equations, LCI factors are determined for each item listed in Appendix 3 based on the recyclable item density and a volume-based LCI factor. The prefix "item" implies that the equation is utilized to calculate factors for each of the recyclable items listed in Appendix 3. Fibrous content material factors are calculated separately in equations presented below because fibrous content material is collected in a separate compartment of collection vehicles.

3.2.2.1 Commingled Recyclables LCI Factors

3.2.2.1.1 Energy Usage for Commingled Recyclables

Total energy usage is calculated for each recyclable item:

EQ 3.2.28

item_TR2_TL_ENG_FACTOR =
$$\frac{(r_TR2_ELEC_VOL_FACTOR + r_TR2_DIES_VOL_FACTOR)^*2,000}{item_D_rcv*item_CF}$$

where item_TR2_TL_ENG_FACTOR = total energy per cubic yard of recyclable processed, Btu/ton
 $r_TR2_ELEC_VOL_FACTOR$ = total electric energy (EQ 3.2.29), Btu/CY
 $r_TR2_DIES_VOL_FACTOR$ = total diesel energy (EQ 3.2.30), Btu/CY
 $item_D_rcv$ = loose density of item in recycling vehicle, Ib/CY

item_CF = *compaction factor for item, compacted density/loose density* 2,000 *lb/ton conversion factor*

Electric energy usage is determined by:

EQ 3.2.29

r_TR2_ELEC_VOL_FACTOR = (fac_e * r_FAC_A + r_comp_e) * region_btu_per_elec_kwh

where r_TR2_ELEC_VOL_FACTOR = electric energy use per cubic yard processed, Btu/CY fac_e= building electric energy requirement, kWh/sq.ft./day r_FAC_A= building area requirement (EQ.3.2.8), sq.ft./CYPD r_comp_e= compactor electric energy requirement, kWh/CY

region_btu_per_elec_kwh=energy usage per kWh produced (electric energy model), Btu/kWh

Diesel fuel usage includes energy from precombustion (generation) and combustion of diesel required for rolling stock operation:

EQ 3.2.30

r_TR2_DIES_VOL_FACTOR = r_DIES_PREC + r_DIES_COMB

where $r_TR2_DIES_VOL_FACTOR = total energy used by diesel powered equipment, Btu/CY recyclables$ $r_DIES_PREC = energy usage in generation of diesel, Btu/CY recyclables$ $r_DIES_COMB = energy usage by diesel powered rolling stock, Btu/CY recyclables$

Precombustion energy usage is calculated from total gallons fuel utilized per cubic yard of recyclables processed:

EQ 3.2.31

r_DIES_PREC = r_rs_e * dsl_pc_enrg

where r_DIES_PREC = energy use in diesel fuel generation, Btu/CY recyclables r_rs_e = rolling stock diesel use, gallon/CY recyclables dsl_pc_enrg = energy required to produce fuel, Btu/gallon fuel

Diesel energy usage by rolling stock is calculated in EQ 3.2.32 with factor (dsl_enrg) representing the energy content of diesel.

EQ 3.2.32

r_DIES_COMB = *r_rs_e* * *dsl_enrg*

where	r_DIES_COMB	= diesel energy used by rolli	ng stock, Btu/CY red	cyclables
	r_rs_e	= rolling stock diesel use,	gallon/CY recyclables	
	dsl_enrg	energy used by rolling stock combustion of diesel		Btu/gallon fuel
3.2.2.1.2 Water usage for Commingled Recyclables

For each recyclable item, water usage for transfer station washdown is found by:

EQ 3.2.33

where item_TR2_WRUSE_FACTOR= water used in facility washdown for recyclable item, gallon/ton item item_D_rcv = density of recylable item, lb/CY recyclables r_TR2_WRUSE_VOL_FACTOR= volume based water use defined below, gallon water/CY recyclables item_CF= compaction factor for item, compacted density/loose density 2,000 lb/ton conversion factor

EQ 3.2.34

r_TR2_WR USE_VOL_FACTOR =
$$\frac{wash_r * fac_wr * r_FAC_A * 12}{ywd}$$

3.2.2.1.3 Emissions for Commingled Recyclables

Atmospheric releases

Atmospheric releases of pollutants are found by summing emissions from sources in facility operation. The emission sources and therefore equations required are the same for each pollutant listed in Table 5. Equations for particulate matter emissions are given to exemplify emissions calculations:

item_TR2_pm_FACTOR = $\frac{(r_pm_elec + r_pm_rs_pc + r_pm_rs_c)*2,000}{item_D_rcv*item_CF}$

Electricity generation particulate matter emissions are found by:

EQ 3.2.36

r_pm_elec = (r_comp_e + fac_e * r_FAC_A) * PM_r_tot

where r_pm_elec = electricity generation particulate matter emission, lb/CY recyclables
r_comp_e = compactor energy usage, kWh/CY recyclables
r_FAC_A = building area requirement (EQ.3.2.8), sq.ft/CYPD
fac_e = building energy usage, kWh/sq.ft/day
PM_r_tot = particulate matter factor (electric energy model), lb/kWh

The emission factor (PM_r_tot) accounts for the emission of particulate matter resulting from the

production of electricity. For diesel generation or precombustion emissions the calculation is:

EQ 3.2.37

$$r_pm_rs_pc = \frac{r_rs_e * pm_dies_pc_em}{1,000}$$

where r_pm_rs_pc = particulate matter emitted in diesel generatation, lb/CY recyclables r_rs_e = rolling stock diesel usage, gallon/CY recyclables pm_dies_pc_lb_gal = diesel precombustion pm emissions (common model), lb/1,000 gallon The atmospheric emissions from rolling stock operation (*emission*_rs_c for example, pm_rs_c) are user-input or default values determined from a regression analysis of the equipment emissions for a range of sizes of transfer stations (Appendix 5).

Greenhouse gas equivalents are calculated with factors for the 20-year global warming potential for relevant pollutants:

EQ 3.2.38

item_TR2_gwp_FACTOR = item_TR2_co2biomass_FACTOR * GWP_CO2biomass + item_TR2_co2fossil_FACTOR * GWP_CO2fossil + item_TR2_ch4_FACTOR * GWP_CH4 + item_TR2_nox_FACTOR * GWP_NOX + item_TR2_hc_FACTOR * GWP_HC

Solid waste production

The transfer station process model also accounts for solid waste production associated with MSW processing at TR2. For a given solid waste (SW1), the total production is:

EQ 3.2.39

item_TR2_sw1_FACTOR=
$$\frac{(r_sw1_elec + r_sw1_rs_pc)*2,000}{item_D_rcv*item_CF}$$

item_TR1_sw1_FACTOR= total SW1 production, lb/ton recyclables processed
 r_sw1_elec= solid waste produced in generation of electricity used, lb/CY recyclables processed
 r_sw1_rs_pc = solid waste produced in generation of diesel used, lb/CY recyclables processed
 item_D_rcv = density of recycled item, lb/CY
 item_CF= compaction factor for item, compacted density/loose density
 2,000 lb/ton conversion factor

Solid waste produced in electricity generation is:

EQ 3.2.40

 $r_sw1_elec = (comp_e + fac_e * r_FAC_A) * SW1_r_tot$

where r_sw1_elec = solid waste (SW1) produced in electricity generation, lb/CY recyclables r_comp_e=compactor energy usage, kWh/CY recyclables fac_e=building energy usage, kWh/sq.ft/day r_FAC_A=building area requirement, sq.ft./CYPD SW1_r_tot = solid waste (SW1) factor (electric energy model), lb/kWh

For diesel generation or precombustion emissions the calculation is:

EQ 3.2.41

$$r_sw1_rs_pc = \frac{r_rs_e * sw1_dies_pc_em}{1,000}$$

where r_sw1_rs_pc = solid waste (SW1) produced in diesel generatation, lb/CY recyclables
r_rs_e = rolling stock diesel usage, gallon/CY recyclables
sw1_dies_pc_em = diesel precombustion solid waste (SW1) production (common model), lb/1000 gallon

Waterborne releases

Equations for dissolved solids waterborne releases are given to exemplify waterborne release equations. For a complete list of waterborne pollutants tracked, refer to Table 5. Total waterborne releases are the sum of releases from facility washdown and energy generation:

EQ 3.2.42

where item_TR2_ds_FACTOR= waterborne dissolved solids per ton of refuse processed, lb/ton
 r_ds_wwr = dissolved solids released in facility washwater, lb/CY recyclables
 r_ds_elec = dissolved solids released in generation of electricity used, lb/CY recyclables
 r_ds_rs = dissolved solids released in generation of diesel used, lb/CY recyclables
 item_D_rcv = density of recyclable item, lb/CY
 item_CF = compaction factor for item, compacted density/loose density
 2,000 lb/ton conversion factor
 and other variables as defined below.

For facility wash water, dissolved solids are calculated as:

EQ 3.2.43

where r_ds_wwr = dissolved solids from wash water, lb/CY recyclables r_TR2_WR USE_VOL_ FACTOR = wash water use, gallon/CY recyclables DS_wwr_r = wash water dissolved solids, lb/gallon

For electricity generation, dissolved solids are calculated with a factor that accounts for the releases associated with electricity production:

EQ 3.2.44

r_ds_elec = (fac_e * r_FAC_A + r_comp_e) * DS_elec_lb_KWH

where r_ds_elec = waterborne dissolved solids due to electricity generation, lb/CY recyclables
fac_e = facility energy usage, kWh/sq.ft./day
r_FAC_A = building area requirement (EQ 3.2.8), sq.ft./CYPD
r_comp_e = compactor energy usage, KWh/CY
DS_elec_lb_KWH = dissolved solids emissions from electricity generation, lb/kWh

For diesel precombustion, dissolved solids are:

EQ 3.2.45

$$r_ds_rs = \frac{r_rs_e * ds_dies_pc_em}{1000}$$

where r_ds_dies = dissolved solids emissions due to diesel generation, lb/CY recyclables
r_rs_e = rolling stock diesel usage, gal/CY recyclables
ds_dies_pc_em = precombustion dissolved solids release factor (common model), lb/1000 gallon

3.2.2.2 Fibrous Content Material LCI Factors

Similar to LCI factors for commingled recyclables, a weight-based LCI factor is determined for each type of fibrous content material. Weight-based factors for each item are determined from a volume-based factor that applies to all types of fibrous content material. The following subsections of Section 3.2.2.2 give the methodology for determining energy usage, water usage, and emissions associated with fibrous content materials processed at a commingled recyclables MRF.

3.2.2.2.1 Energy Usage for Fibrous Content Material

Total energy usage is calculated for each fibrous content item:

where item_TR2_TL_ENG_FACTOR = total energy per cubic yard of recyclable processed, Btu/ton
fcm_TR2_ELEC_VOL_FACTOR = total electric energy (EQ 3.2.47), Btu/CY
fcm_TR2_DIES_VOL_FACTOR = total diesel energy (EQ 3.2.48), Btu/CY
item_D_rcv = loose density of item in recycling vehicle, Ib/CY
item_CF = compaction factor for item, compacted density/loose density
2.000 lb/ton conversion factor

Electric energy usage is determined by:

EQ 3.2.47

fcm_TR2_ELEC_VOL_FACTOR = (fac_e * fcm_FAC_A) * region_btu_per_elec_kwh

where fcm_TR2_ELEC_VOL_FACTOR = electric energy use per cubic yard processed, Btu/CY
fac_e = building electric energy requirement, kWh/sq.ft./day
fcm_FAC_A= building area requirement (EQ.3.2.27), sq.ft./CYPD
region_btu_per_elec_kwh = energy usage per kWh produced (electric energy model), Btu/kWh

Diesel fuel usage includes energy from precombustion (generation) and combustion of diesel required for rolling stock operation:

3.2.48

fcm_TR2_DIES_VOL_FACTOR = fcm_DIES_PREC + fcm_DIES_COMB

where fcm_TR2_DIES_VOL_FACTOR = total energy used by diesel powered equipment, Btu/CY recyclables fcm_DIES_PREC = energy usage in generation of diesel, Btu/CY recyclables fcm_DIES_COMB = energy usage by diesel powered rolling stock, Btu/CY recyclables

Precombustion energy usage is calculated from total gallons fuel utilized per cubic yard of fibrous content material processed:

EQ 3.2.49

fcm_DIES_PREC = fcm_rs_e * dsl_pc_enrg

where fcm_DIES_PREC = energy use in diesel fuel generation, Btu/CY recyclables
fcm_rs_e = rolling stock diesel use, gallon/CY recyclables
dsl_pc_enrg = energy required to produce fuel, Btu/gallon fuel

Diesel energy usage by rolling stock is calculated in Equation 3.2.50 with factor (dsl_enrg) representing the energy content of diesel.

EQ 3.2.50

where fcm_DIES_COMB = diesel energy used by rolling stock, Btu/CY recyclables fcm_rs_e = rolling stock diesel use, gallon/CY recyclables dsl_enrg = energy used by rolling stock combustion of diesel, Btu/gallon fuel

3.2.2.2.2 Water usage for Fibrous Content Material

For each recyclable item, water usage for transfer station washdown is found by:

EQ 3.2.51

item_TR2_WRUSE_FACTOR =
$$\frac{fcm_TR2_WRUSE_VOL_FACTOR * 2,000}{item_D_rcv * item_CF}$$

where item_TR2_WRUSE_FACTOR= water used in facility washdown for recyclable item, gallon/ton item item_D_rcv = density of recylable item, lb/CY recyclables

fcm_TR2_WRUSE_VOL_FACTOR = volume based water use defined below, gallon water/CY recyclables item_CF = compaction factor for item, compacted density/loose density 2,000 lb/ton conversion factor

EQ 3.2.52

fcm_TR2_WR USE_VOL_FACTOR = $\frac{wash_r * fac_wr * fcm_FAC_A * 12}{ywd}$

3.2.2.2.3 Emissions for Fibrous Content Material

Atmospheric releases

Atmospheric releases of pollutants are found by summing emissions from sources in facility operation. The emission sources and, therefore, equations required are the same for each pollutant listed in Table 5. Equations for particulate matter emissions are given to illustrate emissions calculations:

EQ 3.2.53

Electricity generation particulate matter emissions are found by:

EQ 3.2.54

fcm_pm_elec = (fcm_comp_e + fac_e * fcm_FAC_A) * PM_r_tot

where fcm_pm_elec = electricity generation particulate matter emission, lb/CY recyclables
fcm_comp_e=compactor energy usage, kWh/CY recyclables
fcm_FAC_A=building area requirement (EQ.3.2.27), sq.ft/CYPD
fac_e=building energy usage, kWh/sq.ft/day
PM_r_tot = particulate matter factor (electric energy model), lb/kWh

The emission factor (PM_r_tot) accounts for the emission of particulate matter resulting from the production of electricity. For diesel generation or precombustion emissions, the calculation is:

EQ 3.2.55

$$fcm_pm_rs_pc = \frac{fcm_rs_e * pm_dies_pc_em}{1,000}$$

where fcm_pm_rs_pc = particulate matter emitted in diesel generatation, lb/CY recyclables
fcm_rs_e = rolling stock diesel usage, gallon/CY recyclables
pm_dies_pc_lb_gal = diesel precombustion pm emissions (common model), lb/1,000 gallon

The atmospheric emissions from rolling stock operation (*emission*_rs_c for example, pm_rs_c) are user-input or default values determined from a regression analysis of the equipment emissions for a range of transfer station sizes (Appendix 5).

Greenhouse gas equivalents are calculated with factors for the 20-year global warming potential for relevant pollutants:

EQ 3.2.56

item_TR2_gwp_FACTOR = item_TR2_co2biomass_FACTOR * GWP_CO2biomass + item_TR2_co2fossil_FACTOR * GWP_CO2fossil + item_TR2_ch4_FACTOR * GWP_CH4 + item_TR2_nox_FACTOR * GWP_NOX + item_TR2_hc_FACTOR * GWP_HC where item_TR2_gwp_FACTOR = greenhouse gas equivalents/ton recyclables processed item_TR2_emission_FACTOR = emissions of carbon dioxide (biomass and non - biomass),

nitrous oxides, methane and hydrocarbons (EQ 3.2.53), lb/ton recyclables GWP emission = 20 - year global warming potential factor for emissions of carbon dioxide

(biomass and non - biomass), nitrous oxides, methane and hydrocarbons, (common model), greeen house gas equivalent/lb pollutant The transfer station process model also accounts for solid waste production associated with fibrous content material processing at TR2. For a given solid waste (SW1), the total production is:

EQ 3.2.57

item_TR2_sw1_FACTOR = $\frac{(fcm_sw1_elec + fcm_sw1_rs_pc)*2,000}{item_D_rcv*item_CF}$

item_TR1_sw1_FACTOR= total SW1 production, lb/ton recyclables processed
 fcm_sw1_elec = solid waste produced in generation of electricity used, lb/CY recyclables processed
 fcm_sw1_rs_pc = solid waste produced in generation of diesel used, lb/CY recyclables processed
 item_D_rcv = density of recycled item, lb/CY
 item_CF = compaction factor for item, compacted density/loose density
 2,000 lb/ton conversion factor

Solid waste produced in electricity generation is:

EQ 3.2.58

fcm_sw1_elec = (comp_e + fac_e * fcm_FAC_A)* SW1_r_tot

where fcm_sw1_elec = solid waste (SW1) produced in electricity generation, lb/CY recyclables
fcm_comp_e=compactor energy usage, kWh/CY recyclables
fac_e=building energy usage, kWh/sq.ft/day
fcm_FAC_A=building area requirement (EQ 3.2.27), sq.ft./CYPD
SW1_r_tot = solid waste (SW1) factor (electric energy model), lb/kWh

For diesel generation or precombustion emissions the calculation is:

EQ 3.2.59

$$fcm_sw1_rs_pc = \frac{fcm_rs_e * sw1_dies_pc_em}{1,000}$$

where fcm_sw1_rs_pc = solid waste (SW1) produced in diesel generatation, lb/CY recyclables
fcm_rs_e = rolling stock diesel usage, gallon/CY recyclables
sw1_dies_pc_em=diesel precombustion solid waste (SW1) production (common model), lb/1000 gallon

Waterborne releases

Equations for dissolved solids waterborne releases are given to illustrate waterborne release equations. For a complete list of waterborne pollutants tracked, refer to Table 5. Total waterborne releases are the sum of releases from facility washdown and energy generation:

EQ 3.2.60

item_TR2_ds_FACTOR=
$$\frac{(fcm_ds_wwr + fcm_ds_elec + fcm_ds_rs)*2,000}{item_D_rcv*item_CF}$$

where item_TR2_ds_FACTOR= waterborne dissolved solids per ton of refuse processed, lb/ton fcm_ds_wwr= dissolved solids released in facility washwater, lb/CY recyclables fcm_ds_elec = dissolved solids released in generation of electricity used, lb/CY recyclables fcm_ds_rs = dissolved solids released in generation of diesel used, lb/CY recyclables item_D_rcv = density of recyclable item, lb/CY item_CF= compaction factor for item, compacted density/loose density 2,000 lb/ton conversion factor and other variables as defined below.

For facility wash water, dissolved solids are calculated as:

EQ 3.2.61

fcm_ds_wwr = fcm_TR2_WR USE_VOL_FACTOR * DS_wwr_r

where fcm_ds_wwr = dissolved solids from wash water, lb/CY recyclables fcm_TR2_WR USE_VOL_FACTOR = wash water use, gallon/CY recyclables DS_wwr_r = wash water dissolved solids, lb/gallon

For electricity generation, dissolved solids are calculated with a factor that accounts for the releases associated with electricity production:

EQ 3.2.62

	fcm_ds_elec = (fac_e * fcm_FAC_A+ fcm_comp_e) * DS_elec_lb_KWH	1
where	fcm_ds_elec = waterborne dissolved solids due to electricity generation,	b/CY recyclables
	fac_e=facility energy usage, kWh/sq.ft./day	
	fcm_FAC_A=building area requirement (EQ 3.2.27), sq.ft./CYPD	
	fcm_comp_e=compactor energy usage, KWh/CY	
DS_	elec_lb_KWH = dissolved solids emissions from electricity generation,	lb/kWh

For diesel precombustion, dissolved solids are:

EQ 3.2.63

$$fcm_ds_rs = \frac{fcm_rs_e * ds_dies_pc_em}{1000}$$

where fcm_ds_dies = dissolved solids emissions due to diesel generation, lb/CY recyclables
fcm_rs_e = rolling stock diesel usage, gal/CY recyclables
ds_dies_pc_em = precombustion dissolved solids release factor (common model), lb/1000 gallon

3.3 EQUATIONS: TR3 – ONE-COMPARTMENT CO-COLLECTION VEHICLE

TR3 cost and LCI factors are calculated for the three types of material streams entering this transfer station: mixed refuse, recyclables, and fibrous content materials. The equations are presented in separate sections for each of the three material streams. Factors obtained for fibrous content material and mixed refuse are weight based. Item-specific weight-based factors for recyclables are calculated from volume-based factors for recyclables divided by the item-specific loose density. To simplify the presentation of equations, the prefix (TR3_) for variables referred to in this section has been omitted from variable names given below.

3.3.1 Cost Factors

3.3.1.1 Mixed Refuse Cost Factor

The costs for handling mixed refuse at TR3 are determined by summing applicable capital and operating cost components:

EQ 3.3.1

$$m_TR3_COST_FACTOR = \frac{(m_FAC_AC + m_EQ_COST + m_OP_AC)}{ywd}$$

where m_TR3_COST_FACTOR = cost per ton mixed refuse processed at transfer station, \$/ton m_FAC_AC = annual capital cost for facility (EQ.3.3.2), \$/TPD - year m_EQ_AC = annual equipment capital costs (EQ.3.1.12), \$/TPD - year m_OP_COST = annual operating costs (EQ.3.3.8), \$/TPD - year ywd = working days in a year, days/year

An explanation of calculations for each component of EQ 3.3.1 follows.

3.3.1.1.1 Facility Capital Cost for Mixed Refuse

Annualized facility capital cost per ton mixed refuse processed is determined from the sum of facility capital costs.

EQ 3.3.2

Facility Capital Cost (m_FAC_AC) = (Construction + Paving and Site work + Land + Engineering) X CRF

Facility capital costs depend on building area required for processing of mixed refuse as determined

by the summation:

EQ 3.3.3

Mixed Refuse Facility Area = Mixed refuse fraction of black and blue bag tipping floor + Office space + Collection vehicle unloading area + Mixed refuse trailer loading bays

Black and blue bag tipping floor area is:

EQ 3.3.4

m_mixed_ST R_A =
$$\frac{1.25 * rm_stor * 2,000 * 27}{rm_ht * D_cv}$$

where m_mixed_ST R_A = co - collected bags tipping floor storage area, sq. ft./TPD rm_stor = black and blue bag storage time on the tipping floor, days rm_ht = height of black and blue bags stored on the tipping floor, ft. D_cv = density of black and blue bags in collection vehicle, lb/cu. ft. 2,000 lb/ton, 27 CF/CY and a 1.25 maneuverab ility and tipping floor expansion factor

Collection vehicle unloading area is:

EQ 3.3.5

where $m_CV_UL_A = collection vehicle unloading area, sq. ft./TPD$

single_cv_ul_a = area required for single collection vehicle to unload, sq.ft. cv_ul_hr = time to unload a collection vehicle, hours peak_fct = peak collection vehicle arrival rate, no units EWh_d = effective work day length, workday less breaks and stoppages, hour/day cv_load = average weight of collection vehicle, lb Loading bay area for mixed refuse is determined by:

EQ 3.3.6

$$m_LD_A = \frac{m_ld_bay_a^*(m_load_hr + m_tr_rep_hr)^*2000}{Ewh_d^*tr_vol_cap^*tr_d}$$

where m_LD_A=mixed refuse trailer loading bay area, sq.ft./TPD ld_bay_no = area required for single loading bay, sq.ft. m_load_hr = time to load a trailer, hours m_tr_rep_hr = time to replace a full trailer, hours Ewh_d = effective working day length, hours/day tr_vol_cap = transfer trailer capacity, cu.yd. m_tr_d = density in of MSW in transfer vehicle, lb/cu.yd.

The office area rate is applied to the sum of the area requirements calculated above to obtain the total facility area:

EQ 3.3.7

M_FAC_A=(m_mixed_STR_A+m_LD_A+m_CV_UL_A)*(1+off_area_r)

where M_FAC_A= total facility area attributed to mixed refuse processing, sq.ft./TPD m_mixed_STR_A= mixed refuse storage area, sq.ft./TPD m_LD_A= mixed refuse trailer loading area, sq.ft./TPD m_CV_UL_A= mixed refuse collection vehicle unloading area, sq.ft./TPD off_area_r = percent of facility attributed to office space, no units

Once facility area is known, construction, paving and site work, land acquisition, and engineering costs are determined from EQ 3.1.8 through EQ 3.1.11.

3.3.1.1.2 Equipment Capital Costs for Mixed Refuse

Capital costs for equipment (m_EQ_AC) are determined as in TR1 with EQ 3.1.12 through EQ

3.1.13.

3.3.1.1.3 Operating Costs for Mixed Refuse

Operating costs include cost of labor, energy, and maintenance:

$$m_OP_AC = m_WG_AC + \sum_{i}^{Equipment and Facility} m_E_AC + \sum_{i}^{Equipment and Facility} m_M_AC$$

where m_OP_AC= total annual cost per ton processed per day, \$/TPD - year m_WG_AC= labor and management annual costs, \$/TPD - year m_E_AC= rolling stock, compactor and facility annual energy costs, \$/TPD - year m_M_AC= rolling stock, compactor and facility annual maintenance costs, \$/TPD - year

Energy cost (m_E_AC) is calculated with TR1 equations EQ 3.1.16 through EQ 3.1.18 and maintenance costs (m_M_AC) are calculated with EQ 3.1.19. Operating costs associated with labor are calculated by:

EQ 3.3.9

 $m_WG_AC = ((1/m_pick) + m_op_req)^* op_wage^* ywd^*(1 + mang_r)$

where m_WG_AC = labor annual wage cost, \$/TPD - year m_pick_ac = manual sorting rate, ton/hour op_wage = equipment operator wages,\$/hour m_op_req = operator labor hours required per ton, hour/day/TPD ywd = working days in a year, day/year mang_r = management rate as a fraction of labor cost, no units

The default value for equipment operator requirement (op_req) is determined with a linear regression

with operator hours required per day as a function of facility capacity (Appendix 5).

3.3.1.2 Recyclables Cost Factor

Weight-based cost factors for recyclable items are calculated from volume-based cost factors and the item density:

EQ 3.3.10

item_TR3_COST_FACTOR=
$$\frac{r_TR3_COST_CY*2,000}{item_D_rcv*item_CF}$$

where item_TR3_COST_FACTOR= cost factor for specific recyclable item, \$/ton r_TR3_COST_CY = volume based cost factor for recyclables defined below, \$/CY item_D_rcv = density of specific recyclable item, lb/CY item_CF= compaction factor for item, compacted density/loose density and 2,000 lb/ton conversion factor $r _ TR3 _ COST _ CY = (r_FAC_AC + r_EQ_COST + r_OP_AC)/ywd$

where r_TR3_COST_CY = cost per cubic yard processed at transfer station, \$/cubic yard r_FAC_AC = annual capital cost for facility(EQ. 3.3.12), \$/CYPD - year r_EQ_AC = annual equipment capital costs (EQ. 3.3.19), \$/CYPD - year r_OP_COST = annual operating costs (EQ. 3.3.20), \$/CYPD - year ywd = working days in a year, days/year

The equations for components of EQ 3.3.11 are given below.

3.3.1.2.1 Facility Capital Costs for Recyclables

Facility capital costs are calculated by:

EQ 3.3.12

Facility Capital Cost(r_FAC_AC) = (Construction + Paving and Site work + Land + Engineering) X CRF

Facility capital costs for recyclables depend on area requirement to process recyclables, which is:

EQ 3.3.13

Recyclable Facility Area = Black and blue bag tipping floor + Separated blue bags storage area + Collection vehicle unloading area + Trailer loading bays + Office space

The mixed black and blue bag tipping floor area is:

EQ 3.3.14

 $r_mixed_STR_A = \frac{1.25 * rm_stor * 27}{rm_ht}$

where r_mixed_STR_A = co - collected bags tipping floor storage area, sq.ft./CY PD rm_stor = co - collected bags storage time after separation, days

 $rm_ht = height of co - collected bags piled in storage area, ft.$

27 CF/CY and a 1.25 maneuverability and tipping floor expansion factor.

Collection vehicle unloading area for black and blue bag compartment is:

EQ 3.3.15

where r_CV_UL_A = collectionvehicle unloading area, sq.ft./CYPD
single_cv_ul_a = area required for single collectionvehicle to unload, sq.ft.
cv_ul_hr = time to unload a collectionvehicle, hours
peak_fct = peak collectionvehicle arrival rate, no units
EWh_d = effective work day length, workday less breaks and stoppages, hour/day
cv_vol = utilized volume of collectionvehicle, CY

For commingled recyclables separated from mixed refuse, the storage area calculation is:

EQ 3.3.16

$$r_STR_A = \frac{1.25 * r_stor * 27}{r_ht}$$

where r_STR_A = recyclables storage area after manual separation, sq.ft./CYPD
r_stor = recyclables storage time after separation, days.
r_ht = height of recyclables piled in storage area, ft.
27 CF/CY and a 1.25 maneuverability factor.

The loading bay area is determined by:

EQ 3.3.17

where r _LD_A= area required for recyclable trailer loading, sq.ft./CYPD
r_ld_bay_a = area required for single loading bay, sq.ft.
r_load_hr = time to load a trailer, hours
r_tr_rep_hr = time to replace a full trailer, hours
Ewh_d = effective working day length, hours/day
tr_vol_cap=transfer trailer capacity, cu.yd.

The office area rate is applied to the sum of the area requirements calculated above to obtain the

total recyclables processing facility area:

r_FAC_A=(r_mixed_STR_A+r_LD_A+r_CV_UL_A+r_STR_A)*(1+off_area_r)

where r_FAC_A= total facility area attributed to mixed refuse processing, sq.ft./CYPD

r_mixed_STR_A = mixed black and blue bag storage area attributed to recyclables, sq. ft./CYPD

```
r_STR_A = separated blue bag storage area, sq.ft./CYPD
```

r_LD_A=commingled recyclables trailer loading area, sq.ft./CYPD

r_CV_UL_A= commingled recyclables collection vehicle unloading area, sq. ft./CYPD

off_area_r = percent of facility attributed to office space, no units

Once recyclables area is known, construction, paving and site work, land acquisition, permitting, engineering, and contingency costs for recyclables are determined with equations used for TR2 (EQ 3.2.9 through EQ 3.2.12).

3.3.1.2.2 Equipment Capital Costs for Recyclables

Equipment capital costs (r_EQ_AC) include purchase and installation costs for rolling stock, compactors, and hoppers:

EQ 3.3.19

 $r_EQ_AC = (r_RS_cost + r_COMP_cost)^* (1 + eq_inst_r))^* CRF$

where r_EQ_AC = rolling stock purchase and installation costs, \$/CYPD - year
r_RS_cost = cost purchasing transfer station rolling stock, \$/CYPD
r_COMP_cost = cost purchasing compactor and hopper for commingled recyclables,
eq_inst_r = installation cost as a percentage of purchase price
(same rate for all equipment)

The basis for default rolling stock cost (r_RS_cost) and compactor and hopper cost (r_COMP_cost) are given in Appendix 5. Default values are determined from a linear regression of rolling stock costs for a range of facility capacities and from a linear regression of compactor and hopper costs for a range of facility capacities.

\$/CYPD

3.3.1.2.3 Operating Costs for Recyclables

Facility operation costs include annual costs for labor, energy usage, and maintenance for building and equipment. The components of operating costs are determined on an annual basis in terms of cubic yards processed per day.

$$r _ OP _ AC = r_WG_AC + \sum_{i}^{Equipment and Facility} r_E_AC + \sum_{i}^{Equipment and Facility} r_M_AC$$

where $r_OP_AC = total annual cost per cubic yard processed per day, $/CYPD - year <math>r_WG_AC = labor and management annual costs, $/CYPD - year$

 $r_E_AC = rolling stock and facility annual energy costs, $/CYPD - year$

 $r_M_AC = rolling \ stock \ and \ facility \ annual \ maintenance \ costs, \ CYPD - \ year$

Labor costs include both costs for equipment operators and manual sorters:

EQ 3.3.21

$$r_WG_AC = (r_op_req + \frac{1}{r_pick_r})^* op_wage^* ywd^*(1+mang_r)$$

where r_WG_AC = loader annual wage cost,\$/CYPD - year
op_wage = equipment operator wages,\$/hour
r_op_req = operator labor hours required per cubic yard, hour/day/CYPD
r_pick_r = picking rate,CY/person/hr
ywd = working days in a year, day/year
mang_r = management rate as a percent of labor cost, no units

The default value for equipment operator requirement (r_op_req) is determined with a regression analysis of the labor requirements as a function of transfer station capacity (Appendix 5).

Energy costs for diesel-powered rolling stock are calculated by:

EQ 3.3.22

r_RS_E_AC = dies_c * r_rs_e * ywd

where r_RS_E_AC = rolling stock annual energy cost, \$/CYPD - year dies_c = cost of diesel fuel from common module, \$/gallon r_rs_e = diesel fuel requirement, gallon/cubic yard ywd = work days in a year, day/year The fuel requirement for rolling stock is determined from a regression analysis of fuel as a function of facility capacity (Appendix 5).

Facility energy cost is:

EQ 3.3.23

r_FAC_E_AC = (fac_e * r_FAC_A + comp_e) * elec_c * ywd

where r_FAC_E_AC = facility energy cost, \$/CYPD - year
 fac_e = facility electricity usage, kWh/sq.ft - day
 r_FAC_A= area required for transfer station (EQ. 3.3.18), sq.ft./CYPD
 elec_c = electricity cost from common model, \$/kWh
 comp_e = compactor energy requirement, kWh/CY
 ywd = yearly working days, day/year

The annual cost per ton per day for facility maintenance is a user-entered or a default value;

therefore, calculations are not required. Rolling stock maintenance costs are calculated by:

EQ 3.3.24

 $r _ EQ _ M _ AC = eq_mc^* (r_RS_cost + r_COMP_cost)$

where r_EQ_M_AC = annual equipment maintanace cost, \$/CYPD - year eq_mc = annual equipment maintenance cost as a fraction of equipment cost, 1/year r_EQ_cost = capital cost of rolling stock, \$/CYPD r_COMP_cost = capital cost of compactor and hopper, \$/CYPD

The default value for rolling stock cost (r_RS_cost) and compactor and hopper (r_COMP_cost) is determined from a linear regression of equipment costs for a range of facility capacities (Appendix 5).

3.3.1.3 Fibrous Content Material Cost Factor

3.3.1.3.1 FACILITY CAPITAL COSTS FOR FIBROUS CONTENT MATERIAL

The determination of facility capital costs associated with processing fibrous content materials are the same as equations presented in Section 3.3.1.2.1. Input parameters for recyclables (designated with an " r_{-} ") are replaced with input parameters pertaining to fibrous content material (designated with "*fcm_*").

3.3.1.3.2 EQUIPMENT CAPITAL COSTS FOR FIBROUS CONTENT MATERIAL

Equipment capital costs (r_EQ_AC) include purchase and installation costs for rolling stock:

EQ 3.3.25

fcm_EQ_AC = fcm_RS_cost * (1 + eq_inst_r)*CRF

where fcm_EQ_AC = rolling stock purchase and installation costs, \$/CYPD - year fcm_RS_cost = cost of purchasing transfer station rolling stock, \$/CYPD eq_inst_r = installation cost as a percentage of purchase price (same rate for all equipment)

The basis for default rolling stock cost (fcm_RS_cost) is given in Appendix 5. Default values are determined from a linear regression of rolling stock costs for a range of facility capacities and of compactor and hopper costs for a range of facility capacities.

3.3.1.3.3 OPERATING COSTS FOR FIBROUS CONTENT MATERIAL

Operating costs for fibrous content material include the cost of labor, energy, and maintenance. Operating Cost equations are similar to TR2 equations for commingled recyclables (EQ 3.2.20 through 3.2.24) except that EQ 3.3.23 is revised because compactors are not used for fibrous content materials. The new equation is 3.3.26:

EQ 3.3.26

fcm_FAC_E_AC = (fac_e * fcm_FAC_A) * elec_c * ywd

3.3.2 Life Cycle Inventory Factors

Different sets of equations are used for calculation of LCI factors for mixed refuse, commingled recyclables, and fibrous content material. For mixed refuse, emissions, water usage, and energy usage, factors are calculated in the same manner as described for TR1 in Section 3.1.2. Item-specific recyclables LCI factors, including factors for fibrous content materials, are determined from volume-based factors and the item-specific density. Equations for the LCI section of TR2 (3.2.2) also apply to the recyclables processed at TR3.

3.4 EQUATIONS: TR4 – THREE COMPARTMENT CO-COLLECTION

In TR4, mixed refuse, commingled recyclables, and fibrous content materials are all delivered in separate compartments of the same truck. Cost and LCI equations are developed separately for each compartment in Sections 3.4.1 and 3.4.2, respectively. Factors obtained for mixed refuse are weight-based. Item-specific weight-based factors for commingled recyclables and fibrous content materials are calculated from volume-based factors for recyclables divided by the item-specific loose density. To simplify the presentation of equations, the prefix (TR4_) for variables referred to in this section has been omitted from variable names given below.

3.4.1 Cost Factors

TR4 costs are determined separately for mixed refuse, fibrous content materials, and commingled recyclables by summing applicable capital and operating cost components attributable to each.

3.4.1.1 Mixed Refuse Cost Factor

The cost factor for mixed refuse includes facility and equipment capital costs and operating costs:

EQ 3.4.1

$$m_TR4_COST_FACTOR = \frac{(m_FAC_AC + m_EQ_COST + m_OP_AC)}{ywd}$$

where m_TR4_COST_FACTOR = cost per ton mixed refuse processed at transfer station, \$/ton m_FAC_AC = annual capital cost for facility, \$/TPD - year m_EQ_AC = annual equipment capital costs, \$/TPD - year m_OP_COST = annual operating costs, \$/TPD - year ywd = working days in a year, days/year

An explanation of calculations for each component of EQ 3.4.1 for mixed refuse follows.

3.4.1.1.1 FACILITY CAPITAL COSTS FOR MIXED REFUSE

Annualized facility capital cost per ton MSW processed is determined from the sum of facility capital

costs.

Facility Capital Cost (m_FAC_AC) = (Construction + Paving and Site work + Land + Engineering) X CRF

Facility capital costs depend on building area attributed to processing of mixed refuse as determined by the summation:

EQ 3.4.3

Mixed Refuse Facility Area = Mixed refuse tipping floor storage + Collection vehicle unloading + Trailer loading bays + Office space

All area calculations for TR4 are obtained from TR3 equations EQ 3.3.5 through EQ 3.3.8, and facility capital cost equations for TR4 are the same as those for TR1 equations EQ 3.1.8 through EQ 3.1.11.

3.4.1.1.2 Equipment Capital Costs for Mixed Refuse

TR4 equipment costs are calculated with equations used for TR1 equipment costs (EQ 3.1.12

through EQ 3.1.13).

3.4.1.1.3 Operating Cost for Mixed Refuse

TR4 operating costs are calculated with equations used for TR1 operating costs (EQ 3.1.14 through EQ 3.1.19).

3.4.1.2 Recyclables Cost Factor

The cost factor for recyclables processed at TR4 is determined as for TR3 with EQ 3.3.10 through EQ 3.3.11. Weight-based factors are calculated for each item from a volume-based factor for processing recyclables at the facility and the item-specific density. The volume-based cost factor for recyclables includes the facility and equipment capital costs and facility operating costs.

3.4.1.2.1 Facility Capital Cost for Recyclables

Facility capital costs for recyclables are determined as for TR3 (EQ 3.3.12) and depend on facility area attributable to recyclables:

EQ 3.4.4

Recyclables Facility Area = Recyclables tipping floor + Trailer loading bays + Collection vehicle unloading + Office space Areas listed above are calculated as in TR2 equations EQ 3.3.15 through EQ 3.3.18. Facility capital costs are then determined from TR2 equations EQ 3.2.9 through EQ 3.2.12.

3.4.1.2.2 Equipment Capital Costs for Recyclables

TR4 equipment costs for recyclables are calculated with the equation used for TR3 equipment costs for recyclables (EQ 3.3.19).

3.4.1.2.3 Operating Costs for Recyclables

TR4 operating costs are calculated with equations used for TR3 operating costs (EQ 3.3.20 through EQ 3.3.24). However, the picker wage rate in EQ 3.3.21 is zero since blue and black bags are already separated.

3.4.1.3 Fibrous Content Material Cost factor

The fibrous content material cost factor is determined with the same equations presented for commingled recyclables for TR4.

3.4.2 Life Cycle Inventory Factors

Different sets of equations are used for calculation of LCI factors for mixed refuse, commingled recyclables, and fibrous content materials. For mixed refuse, emissions, water usage, and energy usage, factors are calculated in the same manner as described for TR1 in Section 3.1.2. Item-specific recyclable LCI factors for commingled recyclables and fibrous content material are determined from volume-based factors and the item-specific density. Equations for the LCI section of TR2 (3.2.2) also apply to the recyclables processed at TR4.

3.5 EQUATIONS: TR5 -- PRESORTED RECYCLABLES

3.5.1 Cost Factors

TR5 receives presorted recyclables. For each recyclable item, a volume-specific cost factor and item-specific densities are utilized to calculate weight-based cost factors:

item_TR5_COST_FACTOR = $\frac{TR5_COST_CY*2000}{item_D_rcv*item_CF}$

where item_TR5_COST_FACTOR = cost per ton of recyclable item processed, \$/ton TR5_COST_CY = cost per volume processed calculated below, \$/cubic yard item_D_rcv = item specific density from common model, lb/cubic yard item_CF = compaction factor for item, compacted density/loose density 2,000 lb/ton conversion factor.

Total transfer station cost per cubic yard of recyclables is obtained by summing operating costs and

annualized capital costs for the facility and equipment:

EQ 3.5.2

TR5_COST_CY = (FAC_AC + EQ_COST + OP_AC)/ywd

where TR5_COST_CY = cost per cubic yard processed at transfer station, \$/cubic yard FAC_AC = annual capital cost for facility(EQ. 3.5.3), \$/CYPD - year EQ_AC = annual equipment capital costs (EQ. 3.3.19), \$/CYPD - year OP_COST = annual operating costs (EQ. 3.3.20), \$/CYPD - year ywd = working days in a year, days/year

An explanation of calculations for each component of EQ 3.5.2 follows.

3.5.1.1 Facility Capital Cost

Annualized facility capital cost per cubic yard recyclables processed (FAC_AC) is determined from

the sum of facility capital costs:

EQ 3.5.3

Facility Capital Cost(FAC_AC) = (Construction + Paving and Site work + Land + Engineering) X CRF

Since components of facility capital cost are obtained by multiplying unit costs such as land acquisition and construction rates by facility area per cubic yard MSW processed, the facility area is calculated:

EQ 3.5.4

 $FAC_A = CTM_A^*(1 + off_area_r)$

where FAC_A= total facility area, sq. ft./CYPD CTM_A= container and vehicle manuevering area (EQ 3.5.5), sq. ft./CYPD off_area_r = office area as a percentage of facility area

EQ 3.5.5

 $CTM_A = \frac{fac_vol_cap^*(load_hr+ct_rep_hr)^* ct_a}{EWh_d^*ct_vol_cap}$

where CTM_A= area required for containers and vehicle maneuvering, sq. ft./CYPD
fac_vol_cap = facility volume capacity, cu. yd./day
load_hr = container loading time, hour
ct_rep_hr = container replacement time, hour
ct_a = area required for single container and vehicle maneuvering, sq. ft.
ct_vol_cap = capacity of container, cu. yd.

 $EWh_d = effective workday, hours/day$

Typically containers fill at varying rates; however, an average container loading rate is used to determine the number of containers. Once total facility area is known, facility costs are calculated with TR2 equations EQ 3.2.9 through EQ 3.2.12.

3.5.1.2 Equipment Capital Costs

Capital costs for equipment are determined as for recyclables in TR3 with EQ 3.3.19.

3.5.1.3 Operating Costs

Operating costs are calculated as in TR3 equations EQ 3.3.20 through EQ 3.3.24.

3.5.2 Life Cycle Inventory Factors

processed at TR5 (EQ 3.2.28 through 3.2.45).

Item-specific recyclables LCI factors are determined from a volume-based factor and the item-

specific densities. Equations for the LCI section of commingled recyclables for TR2 apply to the recyclables

3.6 EQUATIONS: RT1 -- MSW RAIL TRANSFER FROM COLLECTION VEHICLES

3.6.1 Cost Factors

RT1 is designed to transfer mixed refuse to rail cars. The RT1 cost factor includes the same components as TR1 (EQ 3.1.1); the governing facility design equations are equivalent to those presented in section 3.1.1. The paving and site work rate calculated in EQ 3.1.9 is assumed to include the cost of rail spurs that connect the facility to local rail lines. The local rail line between this facility and a landfill or anaerobic digester is assumed to be included in transportation costs that are determined by the transportation process model.

3.6.2 Life Cycle Inventory Factors

Governing design equations and LCI factor calculations for RT1 are determined by using EQ 3.1.20 to EQ 3.1.36.

3.7 EQUATIONS: RT2 -- MSW RAIL TRANSFER FROM RAIL TO LANDFILL D1

3.7.1 Cost Factors

RT2 is designed to receive loaded rail cars of MSW and transfer the MSW to a landfill. The cost equations for RT2 are the same equations as given for TR1 in Section 3.1.1.1 except total facility area is determined differently. Building area includes loading and unloading areas, as well as a container storage area. Storage space is required for one day because an entire train load of containers arrives at once. The loading and unloading areas are assumed to be included in the maneuverability factor of the facility area equation. Building area is calculated by:

EQ 3.7.1

$$FAC_A = \frac{1.25 * stor * 2000 * 27}{ct_ht * stk_no * trans_d} * (1 + off_area_r)$$

where FAC_A = area per daily ton processed, sq.ft./TPD
 stor = container storage time, days
 trans_d = refuse density in transfer container, lb./cu.yd.
 stk_no = storage stack hieght, number of containers stacked
 ct_ht = container height, ft.
 off_area_r = office area as a fraction of building area, unitless
 and a 1.25 manueverability factor.

Once facility area per daily tonnage is determined in EQ 3.7.1, the remaining cost calculations utilize TR1 equations EQ 3.1.8 through EQ 3.1.11. The paving and site work rate used for the facility capital cost calculation is assumed to include the cost of rail spurs that connect the facility to local rail lines. The local rail line between this facility and a landfill or anaerobic digester is assumed to be included in transportation costs that are determined by the transportation process model.

Equipment and operating costs are calculated with equations presented for TR1 (EQ 3.1.14 through EQ 3.1.19).

3.7.2 Life Cycle Inventory Factors

LCI factors are calculated in a similar manner to that for TR1 in Section 3.1.2 but based on the area and equipment requirements for RT2.

3.8 EQUATIONS: RT3 -- MSW RAIL TRANSFER FROM RAIL TO LANDFILL D3

RT3 factors are determined with the same equations as RT2, because RT3 operates similarly to RT2.

APPENDICES

APPENDIX 1 – TRANSFER STATION MODEL TABLES	A1-1
APPENDIX 2 – REFERENCED MODELS	A2-1
APPENDIX 3 – LIST OF ITEMS RECOVERED IN SEPARATION FACILITIES	A3-1
APPENDIX 4 – DEFAULT CONSTRUCTION COST BASIS	A4-1
APPENDIX 5 – LINEAR REGRESSION TECHNIQUE BASIS	A5-1

APPENDIX 1 – TRANSFER STATION MODEL TABLES

This appendix presents default input values for each of the eight transfer station types. References for general input are given at the end of this section. The source of input values that are generally site-specific is designated with "*". The source of input values that are derived from the regression analysis presented in Appendix 5 is designated with "**". If default data are unavailable for an input parameter, then the table cell for that parameter is blank.

TR1 - INPUT VALUES

Design Selection

		٦						
	units	variable name	Design 1	Design 2	Design 3	Design 4	Design 5	Source
Economic	unito	Variable hame	Design	Design	Designio	Design 4	Designe	000100
Life of Transfer Station Structure	Vears	fac I	20	20	20	20	20	*
	years	lac_i	20	20	20	20	20	
Working Day Length	bours	wh d	8	8	8	8	8	*
Effective Working Day Length	hours	FW/b d	7	7	7	7	7	*
Number of workdows per year	dovo	Evvii_u	260	7	7	7	7	*
Facility Construction Date	uays	ywa	260	260	260	260	260	
Facility Construction Data	¢/ca ft	const o	55	55	55	55	55	[4]
Construction rate	⊅/SQ. It		0.00	0.20	0.20	0.20	0.20	[1]
Engineering, Permitting & Contingency Rate(% Blog & Site Cost)	fraction	eng_i	0.30	0.30	0.30	0.30	0.30	[2]
Land acquisition rate	\$/acre	land_c	1000	1000	1000	1000	1000	
	\$/sq π	sitew_c	1.44	1.44	1.44	1.44	1.44	[1]
Equipment Installation rate(% of equip. cost)	traction	eq_inst_r	0.05	0.05	0.05	0.15	0.15	[2]
			10	10	10	40	40	
Height of Refuse on Tipping Floor	Ħ.	ht	10	10	10	10	10	
Storage Time on Tipping Floor	day	stor	1	1	0.25	1	0.25	
I railer Load Time for Continuous Loading from Tipping Floor	hours	tr_ld_hr	0.15	0.25	n/a	0.25	n/a	[7]
Trailer Load Time for Peak Direct Tip Collection Vehicle Traffic	nours	tr_ld_nr	n/a	n/a	0.4	n/a	0.5	[7]
Trailer Replace Time	hours	tr_rep_hr	0.2	0.2	0.2	0.2	0.2	[7]
Haul Trailer Volume	cu yd	tr_vol_cap	100	100	100	100	100	[3]
Transfer Veh. Density	lb./cu yd	tr_d	450	450	450	550	550	[7]
Area Required for one Trailer/Loading Bay	sq ft	ld_bay_a	1800	1200	1200	1500	1500	[10]
Collection Veh. Unload Time	hours	cv_ul_hr	0.15	0.15	0.15	0.20	0.20	[7]
Peak Collection Vehicle Arrival Factor	unitless	peak_fct	1.5	1.5	1.5	1.5	1.5	*
Collection Vehicle Weight of Load	cv_load	lb	14000	14000	14000	14000	14000	[6]
Single Collection Vehicle Unloading Area	sq ft	single_cv_ul_a	525	525	525	525	525	[10]
Office Area (% of Tipping Floor)	fraction	off_area_r	0.10	0.10	0.10	0.10	0.10	[10]
Land Requirement(multiple of building area)	unitless	land_area_r	10	10	10	10	10	[1]
Equipment Cost Data								
Rolling Stock Cost Rate	\$/TPD		816	1308	837	497	244	**
Compactor and Hopper Cost Rate	\$/TPD		0	0	0	156	190	**
Rolling Stock Life	years		10	10	10	10	10	[9]
Compactor Life	years		10	10	10	10	10	[7]
Operating and Maintenance								
Labor								
Equipment Operator Requirement	hr/day-TPD	op_req	0.047	0.070	0.097	0.051	0.051	**
Equipment Operator and Labor Wage Rate	\$/hr	op_wage	10	10	10	10	10	*
Management Rate	Fraction of labor	mang_r	0.3	0.3	0.3	0.3	0.3	*
Maintenance								
Equipment	Fraction of Cost	eq_mc	0.05	0.05	0.05	0.05	0.05	[4]
Building	\$/TPD-yr	fac_mc	3.25	3.25	3.25	3.25	3.25	[5]
Fuel and Energy								
Building Electric Energy Usage	kWh/sf/day	fac_e	1.00E-03	1.00E-03	1.00E-03	1.00E-03	1.00E-03	[6]
Compactor Electric Energy Usage	kWh/ton	comp_e	n/a	n/a	n/a	0.53	0.53	[7]
Rolling Stock Fuel Usage	gal/ton MSW	rs_e	8.45E-02	1.41E-01	7.13E-02	7.92E-02	3.76E-02	**
LCI Input Values	-							
Rolling Stock Emissions								
Particulates (PM10)	lb/ton	pm10 rs c	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	**
Total Particulates	lb/ton	pm rs c	5.65E-03	9.31E-03	1.05E-02	6.63E-03	5.52E-03	**
Nitrogen Oxides	lb/ton	no rs c	7.59E-02	1.27E-01	9.15E-02	9.90E-02	4.83E-02	**
Hvdrocarbons (non CH4)	lb/ton	hc rs c	5.32E-03	9.23E-03	1.03E-02	8.65E-03	5.42E-03	**
Sulfur Oxides	lb/ton	so is c	6.68E-03	1.11E-02	6.08E-03	8.17E-03	3.21E-03	**
Carbon Monoxide	lb/ton	co rs c	1.87E-02	3.10E-02	3.97E-02	2.31E-02	2.10E-02	**
CO2 (biomass)	lb/ton	co2 bm rs c	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	**
CO2 (non biomass)	lb/ton	co2_rs_c	1.94E+00	3.25E+00	1.64E+00	1.82E+00	8.66E-01	**
Ammonia	lb/ton	anh3 rs c	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	**
Lead	lb/ton	a pb rs c	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	**
Methane	lb/ton	ch4 rs c	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	**
Hydrochloric acid	lb/ton	hic is c	0.00E+00	0.00F+00	0.00F+00	0.00F+00	0.00F+00	**
WASHWATER			3.302100	5.502100	0.002100	0.002100	0.002100	
Facility Washdown Water Volume	aallon/of-woob	fac wr ef	0.2	0.2	0.2	0.2	0.2	161
Washdown Rate	yanun/si-Wash	rac_wi_si wash r	0.2	0.∠ 1	0.2	1	0.2	[U] [R]
Washdown Nate	wash/mUnun	wasii_i		I			I	lol

TR1 - INPUT VALUES

Design Selection

	units	variable name	Design 1	Design 2	Design 3	Design 4	Design 5	Source
Waterborne Release Rates								
Dissolved solids	lb./gallon	DS_wwr_r						
Suspended solids	lb./gallon	SS_wwr_r						
BOD of washdown water	lb./gallon	BOD_wwr_r						
COD of washdown water	lb./gallon	COD_wwr_r						
Oil	lb./gallon	OIL_wwr_r						
Sulfuric acid	lb./gallon	H2S04_wwr_r						
Iron	lb./gallon	FE_wwr_r						
Ammonia	lb./gallon	W_NH3_wwr_r						
Copper	lb./gallon	Cu_wwr_r						
Cadmium	lb./gallon	Cd_wwr_r						
Arsenic	lb./gallon	As_wwr_r						
Mercury	lb./gallon	Hg_wwr_r						
Phosphate	lb./gallon	P_x_wwr_r						
Selenium	lb./gallon	Se_wwr_r						
Chromium	lb./gallon	CR_wwr_r						
Lead	lb./gallon	W_PB_wwr_r						
Zinc	lb./gallon	ZN_wwr_r						

1

TR2 - INPUT VALUES

Design Selection

	units	variable name	Design 1	Design 2	Design 3	Design 4	Design 5	Source
Economic	units	variable fiame	Design	Design 2	Designo	Design 4	Designo	oource
Life of Transfer Station Structure	years	fac_l	20	20	20	20	20	*
Glass Breakage Factor for Model	fraction	gl_break	0.3	0.3	0.3	0.3	0.3	[10]
Operating Hours								
Working Day Length	hours	wh_d	8	8	8	8	8	*
Effective Working Day Length	hours	EWh_d	7	7	7	7	7	*
Number of workdays per year	days	ywd	260	260	260	260	260	*
Facility Construction Data								
Construction rate	\$/sq. ft	const_c	55	55	5	55	55	[1]
Engineering, Permitting & Contingency Rate	%	eng_r	0.3	0.3	0.3	0.3	0.3	[2]
Land acquisition rate	\$/acre	land_c	1000	1000	1000	1000	1000	*
Paving and Sitework	\$/sq ft	sitew_c	1.44	1.44	1.44	1.44	1.44	[1]
Equipment Installation rate(% of equip. cost)	%	eq_inst_r	5%	5%	5%	15%	15%	[2]
Recyclables Processing Area			-			-		
Height of Refuse on Tipping Floor	ft	ht	10	10	10	10	10	*
Storage Time on Tipping Floor	day	stor	1	1	0.25	1	0.25	*
Trailer Load Time for Continuous Loading	hours	tr_ld_hr	0.15	0.25	n/a	0.25	n/a	[7]
Trailer Load Time for Peak Direct Tip Vehicle Traffic	hours	tr_ld_hr	n/a	n/a	0.4	n/a	0.5	[7]
Trailer Replace Time	hours	tr_rep_hr	0.2	0.2	0.2	0.2	0.2	[7]
Haul Trailer Volume	cu yd	tr_vol_cap	100	100	100	100	100	[3]
Area Required for one Trailer/Loading Bay	sq ft	ld_bay_a	1800	1200	1200	1500	1500	[10]
Collection Veh. Unload Time	hours	cv_ul_hr	0.15	0.15	0.15	0.2	0.2	[7]
Peak Collection Vehicle Arrival Factor	unitless	peak_fct	1.5	1.5	1.5	1.5	1.5	*
Collection Vehicle Volume	cubic yard	cv_vol	22	22	22	22	22	[6]
Single Collection Vehicle Unloading Area	sq ft	single_cv_ul_a	525	525	525	525	525	[7]
Fibrous Content Material Processing Area								
Height of Refuse on Tipping Floor	ft	ht	10	10	10	10	10	*
Storage Time on Tipping Floor	day	stor	1	1	1	1	1	*
Trailer Load Time for Continuous Loading	hours	tr_ld_hr	0.4	0.4	0.4	0.4	0.4	[7]
Trailer Replace Time	hours	tr_rep_hr	0.2	0.2	0.2	0.2	0.2	[7]
Haul Trailer Volume	cu yd	tr_vol_cap	100	100	100	100	100	[7]
Area Required for one Trailer/Loading Bay	sq ft	ld_bay_a	1200	1200	1200	1200	1200	[10]
Collection Veh. Unload Time	hours	cv_ul_hr	0.15	0.15	0.15	0.15	0.15	[7]
Peak Collection Vehicle Arrival Factor	unitless	peak_fct	1.5	1.5	1.5	1.5	1.5	[7]
Collection Vehicle Volume	cubic yard	cv_vol	6	6	6	6	6	[7]
Single Collection Vehicle Unloading Area	sq ft	single_cv_ul_a	525	525	525	525	525	[10]
General Area								
Office Area (% of Tipping Floor)	%	off_area_r	10%	10%	10%	10%	10%	[10]
Land Requirement(multiple of building area)	unitless	land_area_r	10	10	10	10	10	[10
Equipment Cost Data								
Recyclables Rolling Stock Cost Rate	\$/CYPD	r_RS_cost	193	220	106	119	58	**
Compactor and Hopper Cost Rate	\$/CYPD	r_COMP_cost	0.00	0.00	0.00	37.16	35.10	**
Fibrous Content Material Rolling Stock Cost Rate	\$/TPD	fcm_RS_cost	99	99	99	99	99	**
Rolling Stock Life	years	r_l	10.00	10.00	10.00	10.00	10.00	[9]
Compactor Life	years	comp_l	10.00	10.00	10.00	10.00	10.00	[7]
Operating and Maintenance								
Labor						1		ı.
Rec. Equipment Operator Requirement	hr/day-CYPD	r_op_req	1.64E-02	9.69E-03	8.29E-03	1.23E-02	1.23E-02	**
Fibrous Content Material Equipment Operator Requirement	hr/day-CYPD	fcm_op_req	1.42E-03	1.42E-03	1.42E-03	1.42E-03	1.42E-03	**
Equipment Operator and Labor Wage Rate	\$/hr	op_wage	10	10	10	10	10	*
Management Rate	% of labor	mang_r	0.3	0.3	0.3	0.3	0.3	*
Maintenance			-					
Equipment	% Cost	eq_mc	0.05	0.05	0.05	0.05	0.05	[4]
Building	\$/CYPD-yr	tac_mc	3.25	3.25	3.25	3.25	3.25	[5]
Fuel and Energy				-	-	-		1
Building Electric Energy Usage	kWh/sf/day	fac_e	0.001	0.001	0.001	0.001	0.001	[6]
Compactor Electric Energy Usage	kWh/CY	r_comp_e	n/a	n/a	n/a	0.53	0.53	[7]
Recyclables Rolling Stock Fuel Usage	gal/CY MSW	r_rs_e	1.95E-02	2.27E-02	8.99E-03	2.60E-02	8.99E-03	**
Fibrous Content Material Rolling Stock Fuel Usage LCI Input Values	gal/ton ONP	fcm_rs_e	1.41E-02	1.41E-02	1.41E-02	1.41E-02	1.41E-02	**

TR2 - INPUT VALUES

Design Selection

	units	variable name	Design 1	Design 2	Design 3	Design 4	Design 5	Source
Recyclables Rolling Stock Emissions	unito		200.g.i 1	200.g.1 2	200.g. 0	200.g.i 1	200.g. 0	<u></u>
Particulates (PM10)	lb/CY	r pm10 rs c	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	**
Total Particulates	lb/CY	r_pm_rs_c	1.29E-03	1.52E-03	1.32E-03	1.58E-03	1.32E-03	**
Nitrogen Oxides	lb/CY	r nfcm rs c	1.75E-02	2.10E-02	1.15E-02	2.36E-02	1.15E-02	**
Hydrocarbons (non CH4)	lb/CY	r hc rs c	1.27E-03	1.58E-03	1.29E-03	2.06E-03	1.29E-03	**
Sulfur Oxides	lb/CY	r sfcm rs c	1.53E-03	1.82E-03	7.66E-04	1.95E-03	7.66E-04	**
Carbon Monoxide	lb/CY	r_cfcm_rs_c	4.28E-03	5.10E-03	5.01E-03	5.50E-03	5.01E-03	**
CO2 (biomass)	lb/CY	r_co2_bm_rs_c	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	**
CO2 (non biomass)	lb/CY	r_co2_rs_c	4.48E-01	5.21E-01	2.07E-01	5.98E-01	2.07E-01	**
Ammonia	lb/CY	r_a_nh3_rs_c	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	**
Lead	lb/CY	r_a_pb_rs_c	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	**
Methane	lb/CY	r_ch4_rs_c	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	**
Hydrochloric acid	lb/CY	r_hlc_rs_c	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	**
Fibrous Content Material Rolling Stock Emissions								
Particulates (PM10)	lb/CY	fcm_pm10_rs_c	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	**
Total Particulates	lb/CY	fcm_pm_rs_c	8.58E-04	8.58E-04	8.58E-04	8.58E-04	8.58E-04	**
Nitrogen Oxides	lb/CY	fcm_nfcm_rs_c	1.28E-02	1.28E-02	1.28E-02	1.28E-02	1.28E-02	**
Hydrocarbons (non CH4)	lb/CY	fcm_hc_rs_c	1.12E-03	1.12E-03	1.12E-03	1.12E-03	1.12E-03	**
Sulfur Oxides	lb/CY	fcm_sfcm_rs_c	1.06E-03	1.06E-03	1.06E-03	1.06E-03	1.06E-03	**
Carbon Monoxide	lb/CY	fcm_cfcm_rs_c	2.98E-03	2.98E-03	2.98E-03	2.98E-03	2.98E-03	**
CO2 (biomass)	lb/CY	fcm_co2_bm_rs_c	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	**
CO2 (non biomass)	lb/CY	fcm_co2_rs_c	3.24E-01	3.24E-01	3.24E-01	3.24E-01	3.24E-01	**
Ammonia	lb/CY	fcm_a_nh3_rs_c	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	**
Lead	lb/CY	fcm_a_pb_rs_c	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	**
Methane	lb/CY	fcm_ch4_rs_c	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	**
Hydrochloric acid	lb/CY	fcm_hlc_rs_c	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	**
WASHWATER								
Facility Washdown Water Volume	gallon/sf	fac_wr_sf	0.2	0.2	0.2	0.2	0.2	[6]
Washdown Rate	wash/month	wash_r	1	1	1	1	1	[8]
Waterborne Release Rates								
Dissolved solids	lb./gallon	DS_wwr_r						
Suspended solids	lb./gallon	SS_wwr_r			_			
BOD of washdown water	lb./gallon	BOD_wwr_r			_			
COD of washdown water	lb./gallon	COD_wwr_r						
Oil	lb./gallon	OIL_wwr_r						
Sulfuric acid	lb./gallon	H2S04_wwr_r						
Iron	lb./gallon	FE_wwr_r						
Ammonia	lb./gallon	W_NH3_wwr_r						
Copper	lb./gallon	Cu_wwr_r						
Cadmium	lb./gallon	Cd_wwr_r						
Arsenic	lb./gallon	As_wwr_r						
Mercury	ib./gallon	Hg_wwr_r						
Phosphate	lb./gallon	P_x_wwr_r						
Selenium	lb./gallon	Se_wwr_r						
Chromium	lb./gallon	CR_wwr_r						
Lead	lb./gallon	W_PB_wwr_r						
Zinc	lb./gallon	ZN_wwr_r						

TR3 and TR4 - INPUT VALUES					
	units	variable name	TR3	TR4	Source
Economic			r	1	-
Life of Transfer Station Structure	years	fac_l	20	20	*
Operating Hours					г.
Working Day Length	hours	wh_d	8	8	
Effective Working Day Length	hours	EVVh_d	/	/	
Number of workdays per year	days	ywd	260	260	*
Facility Construction Data	A / /				۰. ۲
Construction rate	\$/sq. π	const_c	55	55	[1]
Land acquisition rate	¢/ooro	eng_r	1000	1000	[2] *
Daving and Sitework	\$/acie		1.44	1 4 4	[4]
Faving and Sitework	¢/sq it	og inst r	0.15	0.15	[1]
Data for Area Coloulation	naction	eq_inst_i	0.15	0.15	[2]
Collection Vehicle Unloading Area					
Collection Veb Unload Time	hours	cv ul hr	0.15	0.15	[7]
Collection Vehicle Weight of Load	lb	cv_load	500	500	[6]
Cocollection Compartment UsableVolume	cubic yards	cv vol	16	16	[6]
Peak Collection Vehicle Arrival Factor	unitless	peak_fct	1.5	1.5	*
Single Collection Vehicle Unloading Area	sq ft	single cv ul a	525	525	[7]
Mixed Refuse Tipping Floor Area		0			
Height of Refuse on Tipping Floor	ft	rm_ht	10	10	*
Storage Time on Tipping Floor	day	rm_stor	1	1	*
Mixed Refuse Trailer Loading Area	·		L		
Trailer Load Time for Continuous Loading	hours	m_tr_ld_hr	0.25	0.25	[7]
Trailer Replace Time	hours	m_tr_rep_hr	0.2	0.2	[7]
Haul Trailer Volume	cu yd	m_tr_vol_cap	100	100	[3]
Transfer Veh. Density	lb./cu yd	m_tr_d	500	500	[7]
Area Required for one Trailer/Loading Bay	sq ft	ld_bay_a	1500	1500	[10]
Recyclable Storage Area			-		_
Height of Blue Bags	ft	r_ht	10	10	*
Loose Aggregate Blue Bag Density	lb/cu yd	r_tf_d	133	133	[6]
Storage Time on Tipping Floor	day	r_stor	0.25	0.25	*
Recyclable Trailer Loading Area			-	-	_
Rec. Haul Veh. Load Time	hours	r_load_hr	1.5	1.5	[7]
Trailer Replace Time	hours	r_rep_hr	0.25	0.25	[7]
Haul Trailer Volume	cu yd	r_cap_vol	100	100	[3]
Transfer Veh. Density	lb/cu yd	r_trans_d	162	162	[10]
FCM Processing Area					
Collection Vehicle Unloading Area					-
Fibrous Material Collection Veh. Unload Time	hours	cv_ul_hr	0.15	0.15	[7]
Fibrous Material Compartment UsableVolume	cubic yards	cv_vol	16	16	[3]
Peak Collection Vehicle Arrival Factor	unitless	peak_fct	1.5	1.5	*
Single Collection Vehicle Unloading Area	sq ft	single_cv_ul_a	525	525	[10]
FCM Tipping Floor Area				1	-
Height of Refuse on Tipping Floor	ft	rm_ht	10	10	*
Storage Time on Tipping Floor	day	rm_stor	1	1	*
FCM Trailer Loading Area					
I railer Load Time for Continuous Loading	hours	m_tr_ld_hr	0.25	0.25	[/]
	hours	m_tr_rep_hr	0.2	0.2	[/]
Haul I railer Volume	cu yd	m_tr_vol_cap	100	100	[3]
Anno Derwind for the Tanilor (Leading Dev	ib./cu ya	rm_tr_a	500	500	[7]
Area Required for one Trailer/Loading Bay	sqπ	id_bay_a	1500	1500	[/]
Office Area (%) of Tipping Fleer)	fraction	off area -	0.40	0.40	157
Unice Area (% or Tipping Floor)	ILACTION	uii_area_r	10	10	[5] [4]
Equinment Cost Data	011110000	iaiiu_aica_l	10	10	
Mixed Refuse Rolling Stock Cost Rate	\$/TPD		760	760	**
Mixed Refuse Compactor and Hopper Cost Rate	\$/TPD		178	178	**
Recyclables Rolling Stock Cost Rate	\$/CYPD		219	219	**
Mixed Refuse Compactor and Hopper Cost Rate	\$/CYPD		51	51	**
FCM Rolling Stock Cost Pate	\$/0700		00	00	**
Rolling Stock Life	vears		10	10	[9]
5	, .				1 1-1

TR3 and TR4 - INPUT VALUES					
	units	variable name	TR3	TR4	Source
Economic Compactor Life	Veere		10	10	[7]
Operating and Maintenance	years		10	10	[7]
Manual Separation Rate	ton/br	m nick	4	n/a	1
Mixed Refuse Equipment Operator Requirement	hr/day-TPD	m op reg	0.069	0.069	**
Recvclables Equipment Operator Requirement	hr/day-CYPD	r op reg	0.020	0.020	**
FCM Equipment Operator Requirement	hr/day-CYPD	f_op_req	0.003	0.003	**
Equipment Operator and Labor Wage Rate	\$/hr	op_wage	10	10	*
Management Rate	fraction	mang_r	0.30	0.30	*
Maintenance					1
Equipment	fraction	eq_mc	5%	5%	[4]
Building	\$/TPD-yr	fac_mc	3.25	3.25	[5]
Building	\$/CYPD-yr	fac_mc	48.9	48.9	[5]
Fuel and Energy					1
Building Electric Energy Usage	kWh/sf/day	fac_e	0.001	0.001	[6]
Mixed Refuse Compactor Electric Energy Usage	KVVh/ton	m_comp_e	0.002	0.002	[/] **
Mixed Defuse Delling Steek Fuel Llagge		m_comp_e	0.002	0.002	**
Recyclables Rolling Stock Fuel Usage	gai/ton MSW	III_IS_e	0.112	0.112	**
ECM Polling Stock Fuel Usage	gal/ton MSW/	fre o	0.002	0.002	**
LCI Input Values	ganon wow	1_13_0	0.002	0.002	ł
Mixed Refuse Rolling Stock Emissions					
Particulates (PM10)	lb/ton	r_pm10_rs_c	0.00E+00	0.00E+00	**
Total Particulates	lb/ton	r_pm_rs_c	9.25E-03	9.25E-03	**
Nitrogen Oxides	lb/ton	r_nr_rs_c	1.12E-01	1.12E-01	**
Hydrocarbons (non CH4)	lb/ton	r_hc_rs_c	1.07E-02	1.07E-02	**
Sulfur Oxides	lb/ton	r_sr_rs_c	8.66E-03	8.66E-03	**
Carbon Monoxide	lb/ton	r_cr_rs_c	3.35E-02	3.35E-02	**
CO2 (biomass)	lb/ton	r_co2_bm_rs_c	0.00E+00	0.00E+00	**
CO2 (non biomass)	lb/ton	r_co2_rs_c	2.57E+00	2.57E+00	**
Ammonia	lb/ton	r_a_nh3_rs_c	0.00E+00	0.00E+00	**
Lead	lb/ton	r_a_pb_rs_c	0.00E+00	0.00E+00	**
Methane	lb/ton	r_ch4_rs_c	0.00E+00	0.00E+00	**
Hydrochloric acid	lb/ton	r_hlc_rs_c	0.00E+00	0.00E+00	**
Recyclables Rolling Stock Emissions	1- /OV		0.005.00	0.005.00	**
Total Particulates (PM10)	ID/CY	m_pm10_rs_c	0.00E+00	0.00E+00	**
Nitrogen Oxides	b/CY	m_pm_rs_c	2.03E-03	3.19E-02	**
Hydrocarbons (non CH4)	b/CY	m hc rs c	3.05E-03	3.05E-03	**
Sulfur Oxides	lb/CY	m sm rs c	2 46E-03	2 46E-03	**
Carbon Monoxide	lb/CY	m_cm_rs_c	9.54E-03	9.54E-03	**
CO2 (biomass)	lb/CY	m_co2_bm_rs_c	0.00E+00	0.00E+00	**
CO2 (non biomass)	lb/CY	m_co2_rs_c	7.31E-01	7.31E-01	**
Ammonia	lb/CY	m_a_nh3_rs_c	0.00E+00	0.00E+00	**
Lead	lb/CY	m_a_pb_rs_c	0.00E+00	0.00E+00	**
Methane	lb/CY	m_ch4_rs_c	0.00E+00	0.00E+00	**
Hydrochloric acid	lb/CY	m_hlc_rs_c	0.00E+00	0.00E+00	**
FCM Rolling Stock Emissions					1
Particulates (PM10)	lb/ton	f_pm10_rs_c	0.00E+00	0.00E+00	**
Total Particulates	lb/ton	f_pm_rs_c	8.58E-04	8.58E-04	**
Nitrogen Oxides	Ib/ton	f_nf_rs_c	1.28E-02	1.28E-02	**
Hydrocarbons (non CH4)	ID/ton	f_nc_rs_c	1.12E-03	1.12E-03	
Sulfur Oxides	lb/ton	f_sf_rs_c	1.06E-03	1.06E-03	**
CO2 (biomass)	lb/ton	r_u_is_u f co2 hm rs c	0.00F+00	2.90E-03	**
CO2 (non biomass)	lb/ton	f co2 rs c	4.63E-02	4.63E-02	**
Ammonia	lb/ton	fanh3rsc	0.00F+00	0.00F+00	**
Lead	lb/ton	fapbrsc	0.00E+00	0.00E+00	**
Methane	lb/ton	f_ch4 rs c	0.00E+00	0.00E+00	**
Hydrochloric acid	lb/ton	f_hlc_rs_c	0.00E+00	0.00E+00	**
WASHWATER			·		
Facility Washdown Water Volume	gallon/sf-wash	fac_wr_sf	0.2	0.2	[6]
Washdown Rate	wash/month	wash_r	1	1	[8]

Waterborne Release Rates
TR3 and TR4 - INPUT VALUES					
	units	variable name	TR3	TR4	Source
		_			_
Economic		_			_
Dissolved solids	lb./gallon	DS_wwr_r			
Suspended solids	lb./gallon	SS_wwr_r			
BOD of washdown water	lb./gallon	BOD_wwr_r			
COD of washdown water	lb./gallon	COD_wwr_r			
Oil	lb./gallon	OIL_wwr_r			
Sulfuric acid	lb./gallon	H2S04_wwr_r			
Iron	lb./gallon	FE_wwr_r			
Ammonia	lb./gallon	W_NH3_wwr_r			
Copper	lb./gallon	Cu_wwr_r			
Cadmium	lb./gallon	Cd_wwr_r			
Arsenic	lb./gallon	As_wwr_r			
Mercury	lb./gallon	Hg_wwr_r			
Phosphate	lb./gallon	P_x_wwr_r			
Selenium	lb./gallon	Se_wwr_r			
Chromium	lb./gallon	CR_wwr_r			
Lead	lb./gallon	W_PB_wwr_r			
Zinc	lb./gallon	ZN_wwr_r			

TR5 - INPUT VALUES

	units	variable name		Source
Economic				
Life of Transfer Station Structure	years	fac_l	20	*
Operating Hours	houro	ام مانین		*
Effective Working Day Length	hours	wn_u EW/b_d	0	*
Number of workdays per year	dave	Evvii_u	260	*
Facility Construction Data	uays	ywu	200	
Construction rate	\$/sa ft	const c	55	[1]
Engineering, Permitting & Contingency Rate	%	ena r	30%	[2]
Land acquisition rate	\$/acre	land c	1000	*
Paving and Sitework	\$/sq ft	sitew_c	1.44	[1]
Equipment Installation rate(% of equip. cost)	%	eq_inst_r	5%	[2]
Data for Area Calculation				
Single Maneuvering Space and Trailer Area	sq. ft.	ct_a	160	[7]
Haul Veh. Load Time	hours	load_hr	0.25	*
Trailer Replace Time	hours	ct_rep_hr	0.2	[7]
Haul Trailer Volume	cu yd	cap_vol	35	[3]
General Area Input Values				
Office Area (% of Tipping Floor)	%	off_area_r	10%	[5]
Land Requirement(multiple of building area)	unitless	land_area_r	10	[1]
Equipment Cost Data	¢/CVDD		20	**
Rolling Stock Cost Rate	\$/CTPD		10	101
	years		10	[9]
Labor				
Equipment Operator Requirement	hr/dav-CYPD	op reg	0.003	**
Equipment Operator and Labor Wage Rate	\$/hr	op_wage	10	*
Management Rate	% of labor	mang_r	30%	*
Maintenance		-		
Equipment	% Cost	eq_mc	5%	[4]
Building	\$/CYPD-yr	fac_mc	48.9	[5]
Fuel and Energy			,i	
Building Electric Energy Usage	kWh/sf/day	fac_e	0.001	[6]
Rolling Stock Fuel Usage	gal/CY MSW	r_rs_e	0.004	**
LCI Input Values				
Rolling Stock Emissions		10		
Particulates (PM10)		pm10_rs_c	0.00E+00	**
Nitrogon Ovideo		pm_rs_c	6.40E-04	**
Hydrocarbons (non CH4)	ID/CT	ho rs c	5.00E-03	**
Sulfur Oxides	Ib/CY	so rs c	3.72E-04	**
Carbon Monoxide	Ib/CY		2.43E-03	**
CO2 (biomass)	lb/CY	co2 bm rs c	0.00E+00	**
CO2 (non biomass)	lb/CY	co2 rs c	1.00E-01	**
Ammonia	lb/CY	a_nh3_rs_c	0.00E+00	**
Lead	lb/CY	a_pb_rs_c	0.00E+00	**
Methane	lb/CY	ch4_rs_c	0.00E+00	**
Hydrochloric acid	lb/CY	hlc_rs_c	0.00E+00	**
WASHWATER				
Facility Washdown Water Volume	gallon/sf-wash	fac_wr_sf	0.2	[6]
Washdown Rate	wash/month	wash_r	1	[6]
Waterborne Release Rates			r1	
Dissolved solids	lb./gallon	DS_wwr_r		
	ib./gallon	SS_wwr_r		
BOD of washdown water	ib./gallon	BOD_wwr_r		
	lb./gallon			
Sulfuric acid	lb./gallon			
Iron	lb./gallon	FE wwr r		
Ammonia	lb./gallon	W NH3 wwr r		
Copper	lb./gallon	Cu wwr r		
Cadmium	lb./gallon	Cd wwr r		
Arsenic	lb./gallon	As_wwr_r		
	-			

TR5 - INPUT VALUES

TRJ-INFOT VALUES			
	units	variable name	Source
Economic			
Life of Transfer Station Structure	years	fac_l	20 *
Mercury	lb./gallon	Hg_wwr_r	
Phosphate	lb./gallon	P_x_wwr_r	
Selenium	lb./gallon	Se_wwr_r	
Chromium	lb./gallon	CR_wwr_r	
Lead	lb./gallon	W_PB_wwr_r	
Zinc	lb./gallon	ZN_wwr_r	
Methane	lb/ton	ch4_rs_c	

Rail Transfer Input Values

Design type for RT1

			RT1		RT2 - at	RT3 - at	Source
			Design 1	Design 2	Landfill	Enhanced	
Economic	units	variable name	-			Bioreactor	
Life of Transfer Station Structure	years	fac_l	20	20	20	20	*
Operating Hours			-				
Working Day Length	hours	wh_d	8	8	8	8	*
Effective Working Day Length	hours	EWh_d	7	7	7	7	*
Number of workdays per year	days	ywd	260	260	260	260	*
Facility Construction Data							
Construction rate	\$/sq. ft	const_c	55	55	55	55	[1]
Engineering, Permitting & Contingency Rate(% Bldg & Site Cost)	%	eng_r	30%	30%	30%	30%	[2]
Land acquisition rate	\$/acre	land_c	1000	1000	1000	1000	*
Paving and Sitework	\$/sq ft	sitew_c	1.44	1.44	1.44	1.44	[1]
Equipment Installation rate(% of equip. cost)	%	eq_inst_r	5%	5%	5%	5%	[2]
Data for Area Calculation				1			
Height of Refuse on Tipping Floor	ft	ht	10	10	10	10	*
Storage Time on Tipping Floor	day	stor	1	1	1	1	*
Trailer Load Time for Continuous Loading from Tipping Floor	hours	tr_ld_hr	0.25	0.4	0.25	0.25	[7]
Trailer Replace Time	hours	tr_rep_hr	0.3	0.3	0.3	0.3	[7]
Haul Trailer Volume	cu yd	tr_vol_cap	100	100	100	100	[3]
Transfer Veh. Density	lb./cu yd	tr_d	500	500	500	500	[7]
Area Required for one Trailer/Loading Bay	sq ft	ld_bay_a	2000	2000	2000	2000	[7]
Collection Veh. Unload Time	hours	cv_ul_hr	0.15	0.15	0.15	0.15	[7]
Peak Collection Vehicle Arrival Factor	unitless	peak_fct	1.5	1.5	1.5	1.5	*
Collection Vehicle Weight of Load	cv_load	lb	14000	14000	14000	14000	[6]
Single Collection Vehicle Unloading Area	sq ft	single_cv_ul_a	525	525	525	525	[7]
Office Area (% of Tipping Floor)	%	off_area_r	10%	10%	10%	10%	[5]
Land Requirement(multiple of building area)	unitless	land_area_r	10	10	10	10	[1]
Equipment Cost Data							
Rolling Stock Cost Rate	\$/TPD		640	395	1329	1329	**
Compactor and Hopper Cost Rate	\$/TPD		n/a	935	n/a	n/a	**
Rolling Stock Life	years		10	10	10	10	[9]
Compactor Life	years		n/a	10	n/a	n/a	[7]
Operating and Maintenance							
Equipment Operator Requirement	hr/day-TPD	op_req	0.034	0.025	0.044	0.044	
Equipment Operator and Labor Wage Rate	\$/nr	op_wage	10	10	10	10	<u>.</u>
	% of lador	mang_r	30%	30%	30%	30%	
Maintenance	0/ O+		0.05	0.05	0.05	0.05	[4]
Equipment	% Cost	eq_mc	0.05	0.05	0.05	0.05	[4]
Evil and Energy	\$∕TPD-yi	lac_mc	3.20	3.20	3.20	3.20	[၁]
Building Electric Energy Lisage	k/M/b/ef/day	fac. o	0.001	0.001	0.001	0.001	[6]
Compactor Electric Energy Usage	kWh/si/uay		0.001	1.5	0.001	0.001 n/a	[0] [7]
Polling Stock Fuel Usage	cal/top MSW	comp_e	0.127	0.081	0.186	0.186	[/] **
Roming Glock Fuel Osage	gai/torr movv	13_0	0.127	0.001	0.100	0.100	
I CI Innut Values							
Rolling Stock Emissions							
Particulates (PM10)	lb/ton	pm10 rs c	0.00E+00	0.00E+00	0.00E+00	0.00E+00	**
Total Particulates	lb/ton	pm rs c	7.80E-03	5.32E-03	8 10E-03	8 10F-03	**
Nitrogen Oxides	lb/ton	no rs c	1.03E-01	7.25E-02	9.85E-02	9.85E-02	**
Hydrocarbons (non CH4)	lb/ton	hc rs c	6.85E-03	5.27E-03	5.13E-03	5.13E-03	**
Sulfur Oxides	lb/ton	so_rs_c	9.15E-03	6.33E-03	9.23E-03	9.23E-03	**
Carbon Monoxide	lb/ton	co rs c	2.56E-02	1.77E-02	2.56E-02	2.56E-02	**
CO2 (biomass)	lb/ton	co2_bm_rs_c	0.00E+00	0.00E+00	0.00E+00	0.00E+00	**
CO2 (non biomass)	lb/ton	co2_rs_c	2.93E+00	1.85E+00	4.27E+00	4.27E+00	**
Ammonia	lb/ton	a_nh3_rs_c	0.00E+00	0.00E+00	0.00E+00	0.00E+00	**
Lead	lb/ton	a_pb_rs_c	0.00E+00	0.00E+00	0.00E+00	0.00E+00	**
Methane	lb/ton	ch4_rs_c	0.00E+00	0.00E+00	0.00E+00	0.00E+00	**
Hydrochloric acid	lb/ton	hlc_rs_c	0.00E+00	0.00E+00	0.00E+00	0.00E+00	**
WASHWATER							
Facility Washdown Water Volume	gallon/sf-wash	fac_wr_sf	0.2	0.2	0.2	0.2	[6]
			-				

1

Rail Transfer Input Values

Design type for RT1

			R	T1	RT2 - at	RT3 - at	Source
Washdown Rate	wash/month	wash_r	1	1	1	1	[8]
Waterborne Release Rates							
Dissolved solids	lb./gallon	DS_wwr_r					
Suspended solids	lb./gallon	SS_wwr_r					
BOD of washdown water	lb./gallon	BOD_wwr_r					
COD of washdown water	lb./gallon	COD_wwr_r					
Oil	lb./gallon	OIL_wwr_r					
Sulfuric acid	lb./gallon	H2S04_wwr_r					
Iron	lb./gallon	FE_wwr_r					
Ammonia	lb./gallon	W_NH3_wwr_r					
Copper	lb./gallon	Cu_wwr_r					
Cadmium	lb./gallon	Cd_wwr_r					
Arsenic	lb./gallon	As_wwr_r					
Mercury	lb./gallon	Hg_wwr_r					
Phosphate	lb./gallon	P_x_wwr_r					
Selenium	lb./gallon	Se_wwr_r					
Chromium	lb./gallon	CR_wwr_r					
Lead	lb./gallon	W_PB_wwr_r					
Zinc	lb./gallon	ZN_wwr_r					

1

References

[1] Construction Cost Appendix 4.

[2] Dempsey, John, "Dollars and Sense: taking a close look at Cost of Transfer Station Options," notes from short course titled Successful Planning and Design of Transfer Stations," University of Wisconsin in Madison,1995.

[3] Tchobanoglous, G., H. Theisen and S. Vigil, Integrated Solid Waste Management, McGraw-Hill, Inc., New York, 1993, p. 346.

[4] Peluso, Rich, EMCON, notes from short course titled Successful Planning and Design of Transfer Stations," University of Wisconsin in Madison, 1995.

[5] U.S. Environmental Protection Agency, "EPA Handbook: Material Recovery Facilities for Municipal Solid Waste," EPA/625/6-91/031, September 1991.

[6] Curtis, Ed, "A Spreadsheet Framework for Analysis of Cost and LCI Parameters Associated with Collection of Municipal Solid Waste," Independent study report submitted for partial fulfillment of requirements for MCE degree at North Carolina State University, August 13, 1996.

[7] Felker, M, Selecting Transfer Loading Equipment, WMX Technologies, notes from short course titled "Successful Planning and Design of Transfer Stations," University of Wisconsin in Madison, 1995. (0.05-0.03 \$/ton) at \$0.075/KWH.

[8] Etheridge, Michael, Solid Waste Director, Pasquotank County, personal conversation, Spring 1996.

[9] Caterpillar Performance Handbook, Ed. 26, Caterpillar Inc., Peoria, Illinois, October 1995.

[10] Felker, Marty, Memo to Dr. Barlaz, Review of Transfer Station Document, June 1997.

APPENDIX 2 – REFERENCED MODELS

Portions of the common, electric energy, and collection models that contain referenced input values are presented below. The values referenced are also listed in the introduction to Section 3 of this document.

Misc. Costs					
DESCRIPTION	VARIABLE NAME	VALUE			
Diesel Fuel (\$/gal)	dies_cost	1.40			
Electricity (\$/kWh)	elec_cost	0.075			
Waste as Fuel (\$/MBtu)	Waste_fuel_cost	0.960			
Scrap Iron Price (\$/ton)	scrap_fe_price	0.00			

TRANSPORTATION FUELS PRECOMBUSTION EMISSIONS TABLE		
DESCRIPTION	VARIABLE NAME	DIESEL pre comb. (lbs emission per 1000 gal. combusted)
	Trans_fuel_pre_comb_ta	L State
	ble	d_pc_em
Atmospheric Emissions		
Particulates (PM10)	T_F_PC_A_PART_10	
Particulates (Total)	T_F_PC_A_PART	1.82
Nitrogen Oxides	T_F_PC_A_NO	7.19
Hydrocarbons (non CH ₄)	T_F_PC_A_HC	67.49014
Sulfur Oxides	T_F_PC_A_SO	8.8
Carbon Monoxide	T_F_PC_A_CO	5.01
CO ₂ (biomass)	T_F_PC_A_CO2_BM	
CO ₂ (non biomass)	T_F_PC_A_CO2	3594
Ammonia	T_F_PC_A_NH3	0.039
Lead	T_F_PC_A_PB	1.10E-05
Methane	T_F_PC_A_CH4	0.05
Hydrochloric acid	T_F_PC_A_HCL	0.0012
Solid Waste		
Solid Waste #1	T_F_PC_SW_1	82.4
Solid Waste #2	T_F_PC_SW_2	
Solid Waste #3	T_F_PC_SW_3	
Solid Waste #4	T_F_PC_SW_4	
Solid Waste #5	T_F_PC_SW_5	
Waterborne Emissions		
Dissolved Solids	T_F_PC_W_DS	102
Suspended Solids	T_F_PC_W_SS	0.095
BOD	T_F_PC_W_BOD	0.1
COD	T_F_PC_W_COD	0.49058
Oil	T_F_PC_W_OIL	1.23
Sulfuric Acid	T_F_PC_W_H2SO4	0.31
Iron	T_F_PC_W_FE	0.081
Ammonia	T_F_PC_W_NH3	0.014
Copper	T_F_PC_W_Cu	
Cadmium	T_F_PC_W_Cd	
Arsenic	T_F_PC_W_As	
Mercury	T_F_PC_W_Hg	
Phosphate	T_F_PC_W_P_x	
Selenium	T_F_PC_W_Se	
Chromium	T_F_PC_W_CR	3.40E-05
Lead	T_F_PC_W_PB	1.50E-05
Zinc	T_F_PC_W_ZN	2.20E-04

TRANSPORTATION FUELS PRECOMBUSTION ENERGY TABLE					
DESCRIPTION	VARIABLE NAME	pre comb. energy (btu/gal.)			
Diesel - mobil source	dsl_pc_enrg	2.59E+04			
TRANSPORTATION FUELS COMBUSTION ENERGY TABLE					
DESCRIPTION	VARIABLE NAME	comb. energy (btu/gal.)			
Diesel - mobil source	dsl_enrg	1.37E+05			

GREENHOUSE GAS	variable name	20 Year Global Warming Potential
Carbon dioxide (fossil fuel)	CO2_f_GWP	1
Carbon dioxide (biomass)	CO2_bm_GWP	0
Methane	CH4_GWP	63
Nitrous Oxide	NO_GWP	270
Other hydrocarbons	HC_GWP	

MSW PHYSICAL PROPERTIES TABLE					
DESCRIPTION	VARIABLE NAME	Density in Recycling Collection Vehicle (lb/yd3)			
	MSW_COMP_TABLE	D_rcv			
Yard Trimmings, Leaves	YTL	350			
Yard Trimmings, Grass	YTG	350			
Yard Trimmings, Branches	YIB	350			
Old News Print	UNP 000	500			
Old Corr. Cardboard	000	150			
Office Paper	DEK	500			
Priorie Dooks	POOK	500			
Old Magazinos	OMG	500			
3rd Class Mail	MAII	500			
Pallets	PALL FTS	195			
Paper Other #1	PALLETS PAOT1	500			
Paper Other #1	PAOT2	500			
Paper Other #2	PAOT3	500			
Paper Other #4	PAOT4	500			
Paper Other #5	PAOT5	500			
CCCR Other	CCR O	500			
Mixed Paper	PMIX	500			
HDPF - Translucent	HDT	24			
HDPE - Pigmented	HDP	24			
PET	PPET	40			
Plastic - Other #1	PLOT1	50			
Plastic - Other #2	PLOT2	50			
Plastic - Other #3	PLOT3	50			
Plastic - Other #4	PLOT4	50			
Plastic - Other #5	PLOT5	50			
Mixed Plastic	PLMIX	50			
CCNR Other	CNR_O	50			
Ferrous Cans	FCAN	150			
Ferrous Metal - Other	FMOT	750			
Aluminum Cans	ACAN	75			
Aluminum - Other #1	ALOT1	400			
Aluminum - Other #2	ALOT2	400			
Glass - Clear	GCLR	400			
Glass - Brown	GBRN	400			
Glass - Green	GGRN	400			
Mixed Glass	GMIX	400			
CNNR Other	NNR_O	150			
Paper - Non-recyclable	PANR	500			
Food Waste	FW	800			
CCCN Other	CCN_O	700			
Plastic - Non-Recyclable	PLNR	50			
Misc.	MIS_CNN	110			
CCNN Other	CNN_O	110			
Ferrous - Non-recyclable	FNR	750			
Al - Non-recyclable	ANR	400			
Glass - Non-recyclable	GNR	400			
Misc.	MIS_NNN	300			
CNNN Other	NNN_O	400			

Common Model References

		Residential Composition	Multi-family Composition	Commercial Composition
		Default	Default	Default
	VARIABLE			
DESCRIPTION	NAME	Residential	Mult. Family	Commercial
		Composition	Composition	Composition
		(wt. fraction)	(wt. fraction)	(wt. fraction)
	MSW_COMP_TABLE			
Yard Trimmings, Leaves	YTL	0.056	0.056	
Yard Trimmings, Grass	YTG	0.093	0.093	
Yard Trimmings, Branches	YTB	0.037	0.037	
Old News Print	ONP	0.067	0.067	0.022
Old Corr. Cardboard	OCC	0.021	0.021	0.360
Office Paper	OFF	0.013	0.013	0.072
Phone Books	PBK	0.002	0.002	0.003
Books	BOOK	0.009	0.009	
Old Magazines	OMG	0.017	0.017	
3rd Class Mail	MAIL	0.022	0.022	0.023
Pallets	PALLETS			
Paper Other #1	PAOT1	0.000	0.000	0.000
Paper Other #2	PAOT2	0.000	0.000	0.000
Paper Other #3	PAOT3	0.000	0.000	0.000
Paper Other #4	PAOT4	0.000	0.000	
Paper Other #5	PAOT5	0.000	0.000	
CCCR Other	CCR_O			0.019
Mixed Paper	PMIX	0.000	0.000	
HDPE - Translucent	HDT	0.004	0.004	
HDPE - Pigmented	HDP	0.005	0.005	
PET	PPET	0.004	0.004	0.002
Plastic - Other #1	PLOT1	0.000	0.000	
Plastic - Other #2	PLOT2	0.000	0.000	
Plastic - Other #3	PLOT3	0.000	0.000	
Plastic - Other #4	PLOT4	0.000	0.000	
Plastic - Other #5	PLOT5	0.000	0.000	
Mixed Plastic	PLMIX	0.000	0.000	
CCNR Other	CNR_O			0.041
Ferrous Cans	FCAN	0.015	0.015	0.007
Ferrous Metal - Other	FMOT	0.000	0.000	
Aluminum Cans	ACAN	0.009	0.009	0.004
Aluminum - Other #1	ALOT1	0.000	0.000	
Aluminum - Other #2	ALOT2	0.000	0.000	
Glass - Clear	GCLR	0.039	0.039	0.019
Glass - Brown	GBRN	0.016	0.016	0.008
Glass - Green	GGRN	0.010	0.010	0.005
Mixed Glass	GMIX	0.000	0.000	
CNNR Other	NNR_O			0.024
Paper - Non-recyclable	PANR	0.171	0.171	
Food Waste	FW	0.049	0.049	0.474
CCCN Other	CCN_O			0.171
Plastic - Non-Recyclable	PLNR MIS CNN	0.099	0.099	
CCNN Other		0.010	0.010	0 113
Eerrous - Non-recyclable	ENR	0.032	0.032	0.110
Al - Non-recyclable	ANR	0.002	0.005	
Glass - Non-recyclable	GNR	0.003	0.003	
Misc.	MIS NNN	0.123	0.123	
CNNN Other	NNN O	0.120		0 107
		1.000	1.000	1.000

	variable name	Regional Grid
Electricity Emissions	emissions table (lb/k/\Wh)	r_tot
Atmospheric Emissions		
Particulates (PM10)	PART_10	
Total Particulates	PART	2.19E-03
Nitrogen Oxides	NO	5.93E-03
Hydrocarbons (non CH4)	HC	2.32E-03
Sulfur Oxides	SO	1.12E-02
Carbon Monoxide	CO	1.97E-03
CO2 (biomass)	CO2_bm	1.77E-02
CO2 (non biomass)	CO2	1.33E+00
Ammonia	A_NH3	4.08E-08
Lead	A_PB	1.13E-11
Methane	CH4	8.04E-06
Hydrochloric acid	HCL	1.22E-09
Solid Waste #1	SW_1	1.45E-01
Solid Waste #2	SW_2	1.66E-02
Solid Waste #3	SW_3	0.00E+00
Solid Waste #4	SW_4	0.00E+00
Solid Waste #5	SW_5	0.00E+00
Waterborne Emissions		
Dissolved Solids	DS	1.16E-04
Suspended Solids		9.59E-08
BOD	BOD	1.05E-07
COD	COD	5.57E-07
Oil	OIL	3.92E-06
Sulfuric Acid	H2SO4	9.41E-04
Iron	FE	2.34E-04
Ammonia	W_NH3	1.42E-08
Copper	Cu	0.00E+00
Cadmium	Cd	0.00E+00
Arsenic	As	0.00E+00
Mercury	Hg	0.00E+00
Phosphate	<u>P_x</u>	0.00E+00
Selenium	Se	0.00E+00
Chromium		3.50E-11
	VV_PB	1.53E-11
ZINC	ΖN	2.27E-10

APPENDIX 3 – LIST OF ITEMS RECOVERED IN SEPARATION FACILITIES

Abbreviation Item

- ONP **Old News Print**
- OCC Old Corrugated. Cardboard
- OFF Office Paper
- PBK Phone Books
- BOOK Books
- OMG **Old Magazines**
- 3rd Class Mail MAIL
- Paper Other #1 PAOT1
- PAOT2 Paper Other #2 Paper Other #3 PAOT3
- Paper Other #4 PAOT4 Paper Other #5 PAOT5
- PMIX **Mixed Paper**
- FCAN Ferrous Cans
- FMOT
- Ferrous Metal Other ACAN Aluminum Cans
- ALOT1 Aluminum - Other #1
- ALOT2 Aluminum – Other #2
- Glass Clear GCLR
- GBRN Glass – Brown
- Glass Green GGRN
- Mixed Glass
- GMIX
- HDT HDPE - Translucent
- HDP HDPE - Pigmented
- PPET PET
- PLOT1 Plastic - Other #1
- PLOT2 Plastic - Other #2
- PLOT3 Plastic – Other #3
- PLOT4 Plastic - Other #4
- PLOT5 Plastic - Other #5
- PLMIX Mixed Plastic
- CCRO Combustible/ Compostable /Recyclable Other
- CNRO Combustible /Non-Compostable /Recyclable Other
- CCNO Combustible / Compostable /Non-Recyclable Other
- **NNRO** Non-Combustible /Non-Compostable /Recyclable Other

APPENDIX 4 – DEFAULT CONSTRUCTION COST BASIS

Facility capital costs are based on rates for construction and paving and site work determined from the following cost estimate for a 500 TPD transfer station. Land to building area ratio is also determined in order to calculate land requirements.

Table 1 Cost Estimate for Transfer Station

Transfer Station Cost Estimate*

I. Construction				
Item	Quantity	Units	Unit Price	Item Cost
Maneuvering Area	1200	sq. yd.	\$40	\$48,000
Metal Building	13500	sq. ft.	\$20	\$270,000
Concrete Slabwork	400	cu. yd.	\$120	\$48,000
Concrete Footings	60	cu. yd.	\$250	\$15,000
Concrete Push Walls	250	cu. yd.	\$300	\$75,000
Mechanical	13500	sq. ft.	\$6	\$81,000
Electrical	13500	sq. ft.	\$10	\$135,000
Scalehouse Cost				
Metal Building	400	sq. ft.	\$40	\$16,000
Concrete Slabwork	15	cu. yd.	\$120	\$1,800
Concrete Footings	10	cu. yd.	\$250	\$2,500
Interior Treatment	400	sq. ft.	\$50	\$20,000
Motor Truck Scales	2	LS	\$50,000	\$100,000
Mechanical	400	sq. ft.	\$12	\$4,800
Electrical	400	sq. ft.	\$13	\$5,200
ΤΟΤΑΙ				¢822 300

TOTAL TOTAL AREA Construction Cost per unit area

\$822,300 13500 sq. ft. <u>60.91</u> <u>\$/sq. ft.</u>

II. Paving and Site work

Item	Quantity	Units	Unit Price	Item Cost
Earthwork				
Excavation & Backfill-trench	1000	cu. yd.	\$8	\$8,000
General Earthwork	30000	cu. yd.	\$3	\$90,000
Finishing Grassing and Grading	15000	sq. yd.	\$0	\$5,550
Roadways Concrete	500	sq. yd	\$40	\$20,000
Asphalt Pavement, Parking	5000	sq. yd.	\$30	\$150,000
Retaining Walls	3800	sq. ft.	\$25	\$95,000
Site Utilities				\$0
Fire Protection	2000	linear feet	\$25	\$50,000
Water Supply	1000	linear feet	\$25	\$25,000
Sewer System	1000	linear feet	\$25	\$25,000
Electrical	1	L.S.	\$50,000	\$50,000

Site Drainage	1	L.S.	\$20,000	\$20,000	
Fencing	5000	linear feet	\$7	\$35,000	
Landscaping	1	L.S.	\$10,000	\$10,000	
TOTAL				\$583,550	
AREA TOTAL				15000	sq. yd.
Paving and Site work Cost per	<u>unit area</u>			<u>1.44</u>	<u>\$/sq. ft.</u>
III. Land to Building Ratio					
Building Area			sq. ft.	13500	
Land Area			sq. yd.	15000	
Land to Building Ratio				<u>10</u>	<u>sq. ft./sq. ft.</u>

*Source: Dempsey, John, "Dollars and Sense: taking a close look at Cost of Transfer Station Options," notes from short course titled "Successful Planning and Design of Transfer Stations," University of Wisconsin in Madison,1995.

APPENDIX 5 – LINEAR REGRESSION TECHNIQUE BASIS

Default data for several parameters were derived by plotting the value of a parameter (for example, rolling stock diesel consumption) as a function of transfer station capacity. The slope of the resulting plot represents the default value. This appendix presents the general equations used in the regression analysis followed by sections containing default values for transfer stations TR1 to TR5 and RT1 to RT3. The values used as a basis for calculating default values are also presented for each transfer station. A series of four tables is presented for each transfer station, displaying a summary of the default data derivation:

 Table 1: Default Values Resulting from Linear Regressions

Table 2: r-squared Values for Linear Regressions

Table 3: General Input Values Utilized in Linear Regressions

Table 4: Capacity Dependent Values Utilized in Linear Regressions

Regression Analysis for Weight-Based Factors

Regression analysis is utilized to calculate input values for the parameters listed in Table A:

Table A: Inputs with Default Values Based on Linear Regressions

<u>ltem</u>	Variable Name	<u>Units</u>
Rolling Stock Cost Rate	RS_cost	\$/TPD
Compactor Cost	COMP_cost	\$/TPD
Equipment Operator	op_req	hr/TPD/day
Requirement		
Rolling Stock Fuel Use	rs_e	gallon fuel/TPD/day
Rolling Stock Emissions	emission_rs_c_	lb
		pollutant/TPD/day

Rolling Stock and Compactor Cost Rates

The rolling stock cost rate (\$/TPD) is determined with a linear regression of rolling stock cost (\$) as a function of transfer station capacity (TPD). Rolling stock cost is found by summing the product of quantity and cost for each type of rolling stock:

 $Rolling \ stock \ cost = \sum_{i=1}^{rolling \ stock \ utilized \ at \ a \ transfer \ station} (quantity \ of \ rolling \ stock \ * \ cost \ of \ single \ rolling \ stock \ unit)$

The compactor cost rate (\$/TPD) is determined with a linear regression of compactor and hopper cost as a function of facility capacity (TPD). The compactor and hopper cost is determined by:

Compactor and hopper cost = quantity of compactors * cost of single compactor + quantity of hoppers * cost of single hopper

Equipment Operator Requirement

The equipment operator requirement (hr/TPD/day) is determined with a linear regression of total operator hours per day as a function of facility capacity (TPD). The total daily operator requirement is calculated by:

Total daily operator hours = $\sum_{i=1}^{equipment operators} quantity of equipment operators * daily hours of operation$

Rolling Stock Fuel Use

The fuel used by rolling stock (gallon/TPD/day) is determined with a linear regression of daily rolling stock fuel use (gallon/day) as a function of facility capacity (TPD). Daily rolling stock fuel use is determined by the sum:

Daily rolling stock fuel use =
$$\sum_{i=1}^{i} (quantity of rolling stock * gallon fuel/hour for single unit) * is a stock * gallon fuel/hour for single unit) *$$

hours worked per day

Rolling Stock Emissions, Except C0₂ (non-biomass)

Rolling stock emissions (lb/ton) are determined from a linear regression with total daily emissions (lb/day) as a function of facility capacity (TPD). The regression analysis is repeated for each atmospheric pollutant type accounted for in the transfer station model, except CO_2 (non-biomass). Rolling stock emissions per day are determined by the sum of daily emissions for each type of rolling stock:

 $Daily \ rolling \ stock \ emissions = \sum_{i=1}^{types \ of \ rolling \ stock \ utilized} (quantity \ of \ rolling \ stock \ * \ emissions \ per \ hour \ for \ single \ unit) \ *$

hours worked per day

Emissions per hour are determined from emissions standards for various types of rolling stock (grams/hp-hour)¹ and the horsepower values taken from the Caterpillar handbook ².

hourly emissions = grams per horse power per hour * horsepower

The emission rates for various rolling stock are given in Table B.

Table B:

Emission Factors for Diesel Equipment used in Solid Waste Management Operations (EPA, 1991a)³

Type of vehicle	Equipment Use	HC ^{a,b}	CO ^a	NOx ^a	PM ^a	SOx ^a	Aldehyde
Tracked Tractors ^c	Used to spread and compact material	0.9	2.4	10.3	0.69	0.85	0.17
Tracked Loader ^c	Used to handle waste and compact	0.6	2.4	10	0.66	0.85	0.1
Scraper ^c	Used to excavate material	0.5	2.5	9.6	0.79	0.9	0.28
Forklift ^d	Used to lift bales and bins	1.57	6.08	14	1.6	0.93	0.21
Roller & Compactor ^c	Used to compact refuse	0.8	3.1	9.3	0.78	1.0	0.2
Skid Steer Loader (wheeled) ^e	Used to handle waste in MRF	2.1	9	9.6	1.44	0.93	0.2
Sprayer ^e	Used to spray water on landfill	2.23	3.78	7.78	1.51	0.92	0.3

(grams/hp-hr)

^aHC = Hydrocarbons; CO = Carbon Monoxide; NOx = Nitrogen Oxides; PM = Particulate Matter; SOx = Sulfur dioxides.

^bHydrocarbons estimates in Table B are total exhaust and crankcase emissions.

^cEmission factors (EFs) for State Implementation Plans (SIPs).

^dEFs for Inventory A, Exhaust HC, CO, & PM adjusted for transient speed and/or transient load operation. ^eEFs for Inventory A.

Rolling Stock Emissions for C0₂ (non-biomass)

 CO_2 (non-biomass) emissions are determined for each transfer station type and design by multiplying fuel usage (gallon/ton material processed) by an emission factor for CO2 (lb CO_2 (non-biomass)/gallon diesel utilized by rolling stock). The fuel usage factor is calculated with the linear regression approach described above. The default emission factor⁴ is assumed to be appropriate for all transfer stations.

Regression Analysis for Volume-Based Factors

Regression analysis is utilized to calculate input values for parameters listed in Table C:

Table C: Inputs with Default Values Based on Linear Regressions

ltem	Variable Name	<u>Units</u>
Rolling Stock Cost Rate	RS_cost	\$/CYPD
Compactor Cost	COMP_cost	\$/CYPD
Equipment Operator Requirement	op_req	hr/CYPD/day
Rolling Stock Fuel Use	rs_e	gallon fuel/CYPD/day
Rolling Stock Emissions	emission_rs_c_	lb pollutant/CYPD/day

Rolling Stock and Compactor Cost Rates

The rolling stock cost rate (\$/CYPD) is determined with a linear regression of rolling stock cost (\$) as a function of transfer station capacity (CYPD). Rolling stock cost is found by summing the product of quantity and cost for each type of rolling stock:

 $Rolling \ stock \ cost = \sum_{i=1}^{rolling \ stock \ utilized \ at \ a \ transfer \ station} (quantity \ of \ rolling \ stock \ * \ cost \ of \ single \ rolling \ stock \ unit)$

The compactor cost rate (\$/CYPD) is determined with a linear regression of compactor and hopper cost as a function of facility capacity (CYPD). The compactor and hopper cost is determined by:

Compactor and hopper cost = quantity of compactors * cost of single compactor + quantity of hoppers * cost of single hopper

Equipment Operator Requirement

The equipment operator requirement (hr/CYPD/day) is determined with a linear regression of total operator hours per day as a function of facility capacity (CYPD). The total daily operator requirements are calculated by:

Total daily operator hours = $\sum_{i=1}^{equipment operators} quantity of equipment operators * daily hours of operation$

Rolling Stock Fuel Use

The fuel used by rolling stock (gallon/CYPD/day) is determined with a linear regression of daily rolling stock fuel use (gallon/day) as a function of facility capacity (CYPD). Daily rolling stock fuel use is determined by the sum:

$$Daily \ rolling \ stock \ fuel \ use = \sum_{i=1}^{types \ of \ rolling \ stock \ utilized} (quantity \ of \ rolling \ stock \ * \ gallon \ fuel/hour \ for \ single \ unit) \ *$$

hours worked per day

Rolling Stock Emissions, Except C0₂ (non-biomass)

Rolling stock emissions (lb/cubic yard material processed) are determined from a linear regression with total daily emissions (lb/day) as a function of facility capacity (CYPD). The regression analysis is repeated for each atmospheric pollutant type except CO_2 (non-biomass) accounted for in the transfer station model. Rolling stock emissions per day are determined by the sum of daily emissions for each type of rolling stock:

 $Daily \ rolling \ stock \ emissions = \sum_{ij \in I}^{types \ of \ rolling \ stock \ utilized} (quantity \ of \ rolling \ stock \ * \ emissions \ per \ hour \ for \ single \ unit) \ *$

hours worked per day

Emissions per hour are determined from emissions standards for various types of rolling stock (grams/hp-hour)¹ presented in Table B and the horsepower values taken from the Caterpillar handbook².

hourly emissions = grams per horse power per hour * horsepower

Rolling Stock Emissions for C0₂ (non-biomass)

 CO_2 (non-biomass) emissions are determined for each transfer station type and design by multiplying fuel usage (gallon/ton material processed) by an emission factor for CO_2 (lb CO_2 (non-biomass)/gallon diesel utilized by rolling stock). The fuel usage factor is calculated with the linear regression approach described above. The default emission factor⁴ is assumed to be appropriate for all transfer stations.

Appendix 5 References

¹Nishtala, Subba, "Memo: Suggested Emission Factors for Nonroad and Mobile Sources, Draft," 1995. ²Caterpiller Performance Handbook, Ed. 26, Caterpiller Inc., October 1995.

³United States Environmental Protection Agency. 1991a, Nonroad Engine and Vehicle Emission Study -Appendixes, (ANR-443), 21A-2001, Office of Air and Radiation.

⁴Franklin Associates, LTD. Energy Requirements and Environmental Emissions for Fuel Consumption, 1991.

Table 1: TR1 Default Values Resulting from Linear Regressions

Cost	0	U	Design 1	Design 2	Design 3	Design 4	Design 5
Rolling Stock Cost	RS_cost	\$/TPD	816	1308	837	497	244
Compactor and Hopper Cost	COMP_cost	\$/TPD				156	190
Operator Labor Requirement	op_req	hour/day/Tl	0.047	0.070	0.097	0.051	0.051
Energy							
Rolling Stock Fuel Use	rs_e	gallon/ton	0.084	0.141	0.071	0.079	0.038
Emissions			-	-	•	•	
Particulates (PM10)	pm10_rs_c	lb/ton	0.000	0.000	0.000	0.000	0.000
Total Particulates	pm_rs_c	lb/ton	0.006	0.009	0.010	0.007	0.006
Nitrogen Oxides	no_rs_c	lb/ton	0.076	0.127	0.091	0.099	0.048
Hydrocarbons (non CH4)	hc_rs_c	lb/ton	0.005	0.009	0.010	0.009	0.005
Sulfur Oxides	so_rs_c	lb/ton	0.007	0.011	0.006	0.008	0.003
Carbon Monoxide	co_rs_c	lb/ton	0.019	0.031	0.040	0.023	0.021
CO2 (biomass)	co2_bm_rs_c	lb/ton	0.000	0.000	0.000	0.000	0.000
CO2 (non biomass)	co2_rs_c	lb/ton	1.943	3.245	1.639	1.823	0.866
Ammonia	a_nh3_rs_c	lb/ton	0.000	0.000	0.000	0.000	0.000
Lead	a_pb_rs_c	lb/ton	0.000	0.000	0.000	0.000	0.000
Methane	ch4_rs_c	lb/ton	0.000	0.000	0.000	0.000	0.000
Hydrochloric acid	hlc_rs_c	lb/ton	0.000	0.000	0.000	0.000	0.000

Table 2: TR1 r-squared Values for Linear Regressions

Cost		Design 1	Design 2	Design 3	Design 4	Design 5
Rolling Stock Cost	\$/TPD	0.87	0.92	0.91	0.95	0.95
Compactor and Hopper Cost	\$/TPD				0.95	0.97
Operator Labor Requirement	hour/day/TPD	0.82	0.94	0.77	0.85	0.85
Energy						
Rolling Stock Fuel Use	gallon/ton	0.73	0.84	0.91	0.95	0.95
Emissions		-				
Particulates (PM10)	lb/ton	1.00	1.00	1.00	1.00	1.00
Total Particulates	lb/ton	0.76	0.84	0.91	0.95	0.95
Nitrogen Oxides	lb/ton	0.73	0.84	0.91	0.95	0.95
Hydrocarbons (non CH4)	lb/ton	0.66	0.84	0.91	0.95	0.95
Sulfur Oxides	lb/ton	0.75	0.84	0.91	0.95	0.95
Carbon Monoxide	lb/ton	0.75	0.84	0.91	0.95	0.95
CO2 (biomass)	lb/ton	1.00	1.00	1.00	1.00	1.00
CO2 (non biomass)	lb/ton	1.00	1.00	1.00	1.00	1.00
Ammonia	lb/ton	1.00	1.00	1.00	1.00	1.00
Lead	lb/ton	1.00	1.00	1.00	1.00	1.00
Methane	lb/ton	1.00	1.00	1.00	1.00	1.00
Hydrochloric acid	lb/ton	1.00	1.00	1.00	1.00	1.00

Table 3: General Input Values Utilized in Linear Regressions

	units	variable name				
Operating Hours		Design 1	Design 2	Design 3	Design 4	Design 5
Working Day Length	hours/day	8	8	8	8	8
Effective Work Day Length	hours/day	7	7	7	7	7
Workdays per Year	days/year	260	260	260	260	260
CO2 Rolling Stock Emission Factor	lbs/gallon	23.005	23.005	23.005	23.005	23.005

Tables 4a-e: Capacity Dependent Values Utilized in Linear Regressions*

		Table 4	4a: Design	1 Capacity	Dependent	Values
Facility Capacity	TPD	250	500	1000	1500	2000
Loader Operator	persons	3	4	6	8	10
Compactor Operator	persons	0	0	0	0	0
Laborer	persons	1	1	1	1	1
Compactor	\$					
Hopper	\$					
Front-end Loader	\$	271000	271000	271000	271000	271000
Clam-shell Crane	\$	202000	202000	202000	234000	234000
Scale(for tractor trailer)	\$	70000	70000	70000	70000	70000
Backhoe	\$					
Compactors Required	#					
Hoppers Required	#					
Front-end Loaders Required	#	1	1	1	2	2
Clam-shell Crane Required	#	1	1	2	2	3
Tr.Tr. Scales Required	#	1	2	3	4	5
Backhoes Required	#					
Energy Usage						
Front-end Loader	gal/hour	5.5	5.5	5.5	5.5	5.5
Clam-shell Crane	gal/hour	4	4	4	4	4
Backhoe	gal/hour					

		Table 4b: Design 2 Capacity Dependent Values				
Facility Capacity	TPD	250	500	750	1000	1500
Loader Operator	persons	1	4	7	8	11
Compactor Operator	persons	0	0	0	0	0
Laborer	persons	1	1	1	1	1
Compactor	\$					
Hopper	\$					
Front-end Loader	\$	271000	271000	271000	271000	271000
Clam-shell Crane	\$	202000	202000	202000	234000	234000
Scale(for tractor trailer)	\$	70000	70000	70000	70000	70000
Backhoe	\$					
Compactors Required	#					
Hoppers Required	#					
Front-end Loaders Required	#	1	1	2	2	3
Clam-shell Crane Required	#	1	1	2	2	3
Tr.Tr. Scales Required	#	1	2	3	4	5
Backhoes Required	#					
Energy Usage						
Front-end Loader	gal/hour	5.5	5.5	5.5	5.5	5.5
Clam-shell Crane	gal/hour	4	4	4	4	4
Backhoe	gal/hour					

*default fuel requirement values for equipment from CAT Handbook [9]

Tables 4a-e: Capacity Dependent Values Utilized i

		Table 4	c: Design 3	Capacity	Dependent	Values
Facility Capacity	TPD	100	250	500	750	1000
Loader Operator	persons	2	4	6	8	10
Compactor Operator	persons	0	0	0	0	0
Laborer	persons	1	1	1	1	1
Compactor	\$					
Hopper	\$					
Front-end Loader	\$					
Clam-shell Crane	\$					
Scale(for tractor trailer)	\$	70000	70000	70000	70000	70000
Backhoe	\$	86300	86300	86300	86300	86300
Compactors Required	#					
Hoppers Required	#					
Front-end Loaders Required	#					
Clam-shell Crane Required	#					
Tr.Tr. Scales Required	#	1	2	3	4	5
Backhoes Required	#	1	2	3	4	5
Energy Usage			•			
Front-end Loader	gal/hour					
Clam-shell Crane	gal/hour					
Backhoe	gal/hour	1.9	1.9	1.9	1.9	1.9

		Table 4	d: Design 4	Capacity	Dependen	t Values
Facility Capacity	TPD	250	500	1000	1500	1800
Loader Operator	persons	1	2	3	4	5
Compactor Operator	persons	1	2	3	4	5
Laborer	persons	1	1	1	1	1
Compactor	\$	35000	35000	35000	35000	35000
Hopper	\$	20000	20000	20000	20000	20000
Front-end Loader	\$	175700	175700	175700	175700	175700
Clam-shell Crane	\$					
Scale(for tractor trailer)	\$					
Backhoe	\$					
Compactors Required	#	1	2	3	4	5
Hoppers Required	#	1	2	3	4	5
Front-end Loaders Required	#	1	2	3	4	5
Clam-shell Crane Required	#					
Tr.Tr. Scales Required	#					
Backhoes Required	#					
Energy Usage						
Front-end Loader	gal/hour	4	4	4	4	4
Clam-shell Crane	gal/hour					
Backhoe	gal/hour					

*default fuel requirement values for equipment from CAT Han

Tables 4a-e: Capacity Dependent Values Utilized i

		Table	4e: Desigr	n 5 Capacity	Dependen	t Values
Facility Capacity	TPD	250	500	1000	1500	1800
Loader Operator	persons	1	2	3	4	5
Compactor Operator	persons	1	2	3	4	5
Laborer	persons	1	1	1	1	1
Compactor	\$	35000	35000	35000	35000	35000
Hopper	\$	20000	20000	20000	20000	20000
Front-end Loader	\$					
Clam-shell Crane	\$					
Scale(for tractor trailer)	\$					
Backhoe	\$	86300	86300	86300	86300	86300
Compactors Required	#	1	2	4	5	6
Hoppers Required	#	1	2	4	5	6
Front-end Loaders Required	#					
Clam-shell Crane Required	#					
Tr.Tr. Scales Required	#					
Backhoes Required	#	1	2	3	4	5
Energy Usage						
Front-end Loader	gal/hour					
Clam-shell Crane	gal/hour					
Backhoe	gal/hour	1.9	1.9	1.9	1.9	1.9

Table 1: TR2 Default Values Resulting from Linear Regressions

Recyclables Costs		- J	Design 1	Design 2	Design 3	Design 4	Design 5
Rolling Stock Cost	\$/CYPD	RS_cost	193	220	106	119	58
Compactor and HopperCost	\$/CYPD	COMP_cost				37	35
Operator Labor Requirement	hour/day-	op_req	0.016	0.010	0.008	0.012	0.012
Fibrous Content Material Costs							
Rolling Stock Cost	\$/CYPD	RS_cost	99	99	99	99	99
Operator Labor Requirement	hour/day-	op_req	0.001	0.001	0.001	0.001	0.001
Energy							
Recyclables Rolling Stock Fuel Use	gallon/CY	rs_e	0.02	0.02	0.01	0.03	0.01
Fibrous Content Material Rolling Stock Fuel Use	gallon/ton		0.014	0.014	0.014	0.014	0.014
Recyclables Emissions							
Particulates (PM10)	lb/CY	pm10_rs_c	0.000	0.000	0.000	0.000	0.000
Total Particulates	lb/CY	pm_rs_c	0.001	0.002	0.001	0.002	0.001
Nitrogen Oxides	lb/CY	no_rs_c	0.018	0.021	0.012	0.024	0.012
Hydrocarbons (non CH4)	lb/CY	hc_rs_c	0.001	0.002	0.001	0.002	0.001
Sulfur Oxides	lb/CY	so_rs_c	0.002	0.002	0.001	0.002	0.001
Carbon Monoxide	lb/CY	co_rs_c	0.004	0.005	0.005	0.006	0.005
CO2 (biomass)	lb/CY	co2_bm_rs_c	0.000	0.000	0.000	0.000	0.000
CO2 (non biomass)	lb/CY	co2_rs_c	0.448	0.521	0.207	0.598	0.207
Ammonia	lb/CY	a_nh3_rs_c	0.000	0.000	0.000	0.000	0.000
Lead	lb/CY	a_pb_rs_c	0.000	0.000	0.000	0.000	0.000
Methane	lb/CY	ch4_rs_c	0.000	0.000	0.000	0.000	0.000
Hydrochloric acid	lb/CY	hlc_rs_c	0.000	0.000	0.000	0.000	0.000
Fibrous Content Material Emissions							
Particulates (PM10)	lb/CY	pm10_rs_c	0.000	0.000	0.000	0.000	0.000
Total Particulates	lb/CY	pm_rs_c	0.001	0.001	0.001	0.001	0.001
Nitrogen Oxides	lb/CY	no_rs_c	0.013	0.013	0.013	0.013	0.013
Hydrocarbons (non CH4)	lb/CY	hc_rs_c	0.001	0.001	0.001	0.001	0.001
Sulfur Oxides	lb/CY	so_rs_c	0.001	0.001	0.001	0.001	0.001
Carbon Monoxide	lb/CY	co_rs_c	0.003	0.003	0.003	0.003	0.003
CO2 (biomass)	lb/CY	co2_bm_rs_c	0.000	0.000	0.000	0.000	0.000
CO2 (non biomass)	lb/CY	co2_rs_c	0.324	0.324	0.324	0.324	0.324
Ammonia	lb/CY	a_nh3_rs_c	0.000	0.000	0.000	0.000	0.000
Lead	lb/CY	a_pb_rs_c	0.000	0.000	0.000	0.000	0.000
Methane	lb/CY	ch4_rs_c	0.000	0.000	0.000	0.000	0.000
Hydrochloric acid	lb/CY	hlc_rs_c	0.000	0.000	0.000	0.000	0.000

Table 2: TR2 r-squared Values for Linear Reg
--

•	-						
Rolling Stock Cost	\$/CYPD	RS_cost	0.72	0.90	0.99	0.99	0.99
Compactor and HopperCost	\$/CYPD	COMP_cost				0.99	0.90
Dperator Labor Requirement	hour/day-	op_req	0.939	0.844	0.417	0.925	0.925
rous Content Material Costs						-	
Rolling Stock Cost	\$/CYPD	RS_cost	0.440	0.440	0.440	0.440	0.440
ergy						-	
Recyclables Rolling Stock Fuel Use	gallon/CY	rs_e	0.42	0.95	0.99	0.99	0.99
Fibrous Content Material Rolling Stock Fuel Use	gallon/ton		0.440	0.440	0.440	0.440	0.440
cyclables Emissions							
Particulates (PM10)	lb/CY	pm10_rs_c	1.000	1.000	1.000	1.000	1.000
Total Particulates	lb/CY	pm_rs_c	0.424	0.789	0.986	0.986	0.986
Nitrogen Oxides	lb/CY	no_rs_c	0.424	0.803	0.986	0.986	0.986
Hydrocarbons (non CH4)	lb/CY	hc_rs_c	0.424	0.824	0.986	0.986	0.986
Sulfur Oxides	lb/CY	so_rs_c	0.424	0.795	0.986	0.986	0.986
Carbon Monoxide	lb/CY	co_rs_c	0.424	0.796	0.986	0.986	0.986
CO2 (biomass)	lb/CY	co2_bm_rs_c	1.000	1.000	1.000	1.000	1.000
CO2 (non biomass)	lb/CY	co2_rs_c	1.000	1.000	1.000	1.000	1.000
Ammonia	lb/CY	a_nh3_rs_c	1.000	1.000	1.000	1.000	1.000
_ead	lb/CY	a_pb_rs_c	1.000	1.000	1.000	1.000	1.000
Methane	lb/CY	ch4_rs_c	1.000	1.000	1.000	1.000	1.000
Hydrochloric acid	lb/CY	hlc_rs_c	1.000	1.000	1.000	1.000	1.000
rous Content Material Emissions							
Particulates (PM10)	lb/CY	pm10_rs_c	1.000	1.000	1.000	1.000	1.000
Total Particulates	lb/CY	pm_rs_c	0.440	0.440	0.440	0.440	0.440
Nitrogen Oxides	lb/CY	no_rs_c	0.440	0.440	0.440	0.440	0.440
Hydrocarbons (non CH4)	lb/CY	hc_rs_c	0.440	0.440	0.440	0.440	0.440
Sulfur Oxides	lb/CY	so_rs_c	0.440	0.440	0.440	0.440	0.440
Carbon Monoxide	lb/CY	co_rs_c	0.440	0.440	0.440	0.440	0.440
CO2 (biomass)	lb/CY	co2_bm_rs_c	1.000	1.000	1.000	1.000	1.000
CO2 (non biomass)	lb/CY	co2_rs_c	1.000	1.000	1.000	1.000	1.000
Ammonia	lb/CY	a_nh3_rs_c	1.000	1.000	1.000	1.000	1.000
Lead	lb/CY	a_pb_rs_c	1.000	1.000	1.000	1.000	1.000
Methane	lb/CY	ch4_rs_c	1.000	1.000	1.000	1.000	1.000
Hydrochloric acid	lb/CY	hlc_rs_c	1.000	1.000	1.000	1.000	1.000

Table 3: General Input Values Utilized in Linear Regressions

Operating Hours	_	Design 1	Design 2	Design 3	Design 4	Design 5
Working Day Length	hours/day	8	8	8	8	8
Effective Working Day Length	hours/day	7	7	7	7	7
Number of workdays per year	days	260	260	260	260	260
CO2 Emissions	lbs/gallon	23.005	23.005	23.005	23.005	23.005

Tables 4a-e: Capacity Dependent Values Utilized in Linear Regressions*

Recyclables		Table 4a	a: Design 1	Capacity D	Dependent \	/alues
Commingled Recyclables Capacity	CYPD	1200	2500	4500	6000	7500
Loader Operator	persons	3	5	7	12	14
Compactor Operator	persons	0	0	0	0	0
Laborer	persons	1	1	1	1	1
Compactor	\$					
Hopper	\$					
Front-end Loader	\$	271000	271000	271000	271000	271000
Clam-shell Crane	\$	202000	202000	202000	234000	234000
Scale(for tractor trailer)	\$	70000	70000	70000	70000	70000
Backhoe	\$					
Compactors Required	#					
Hoppers Required	#					
Front-end Loaders Required	#	1	1	1	2	2
Clam-shell Crane Required	#	1	1	1	2	2
Tr.Tr. Scales Required	#	1	2	3	4	5
Backhoes Required	#					
Fibrous Content Material						
Fibrous Content Material Capacity	CYPD	250	500	900	1200	1500
Loader Operator	persons	0.1	0.1	0.25	0.25	0.25
Front-end Loader	\$	271000	271000	271000	271000	271000
Front-end Loader Required	#	0.25	0.25	0.25	0.5	0.5
Energy Usage			-	-		
Front-end Loader	gal/hour	5.5	5.5	5.5	5.5	5.5
Clam-shell Crane	gal/hour	4	4	4	4	4
Backhoe	gal/hour	1.9	1.9	1.9	1.9	1.9
Recyclables		Table 4	o: Design 2	Capacity D	Dependent \	/alues
Recyclables Facility Capacity	CYPD	Table 41 1200	2500 Design 2	Capacity D 4500	Dependent V 6000	/alues 7500
Recyclables Facility Capacity Loader Operator	CYPD persons	Table 41 1200 2	Design 2 2500 3	2 Capacity D 4500 4	Dependent V 6000 6	/alues 7500 8
Recyclables Facility Capacity Loader Operator Compactor Operator	CYPD persons persons	Table 4I 1200 2 0	Design 2 2500 3 0	2 Capacity D 4500 4 0	Dependent V 6000 6 0	/alues 7500 8 0
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer	CYPD persons persons persons	Table 4I 1200 2 0 1	Design 2 2500 3 0 1	Capacity E 4500 4 0 1	Dependent V 6000 6 0 1	/alues 7500 8 0 1
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor	CYPD persons persons persons \$	Table 41 1200 2 0 1	Design 2 2500 3 0 1	2 Capacity E 4500 4 0 1	Dependent \ 6000 6 0 1	/alues 7500 8 0 1
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper	CYPD persons persons persons \$ \$	Table 41 1200 2 0 1	Design 2 2500 3 0 1	2 Capacity L 4500 4 0 1	Dependent V 6000 6 0 1	/alues 7500 8 0 1
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader	CYPD persons persons persons \$ \$ \$ \$	Table 4 1200 2 0 1 271000	2500 3 0 1 271000	2 Capacity I 4500 4 0 1 271000	Dependent V 6000 6 1 1 271000	/alues 7500 8 0 1 1 271000
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane	CYPD persons persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 4 1200 2 0 1 271000 202000	2500 3 0 1 271000 202000	Capacity I 4500 4 0 1 271000 202000	Dependent V 6000 6 0 1 271000 234000	/alues 7500 8 0 1 271000 234000
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer)	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 4 1200 2 0 1 271000 202000 70000	2500 3 0 1 271000 202000 70000	Capacity I 4500 4 0 1 271000 202000 70000	Dependent V 6000 6 0 1 271000 234000 70000	/alues 7500 8 0 1 271000 234000 70000
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 41 1200 2 0 1 271000 202000 70000	b: Design 2 2500 3 0 1 271000 202000 70000	Capacity I 4500 4 0 1 271000 202000 70000	Dependent V 6000 6 0 1 271000 234000 70000	/alues 7500 8 0 1 271000 234000 70000
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 41 1200 2 0 1 271000 202000 70000	Design 2 2500 3 0 1 271000 202000 70000	Capacity I 4500 4 0 1 271000 202000 70000	Dependent V 6000 6 0 1 271000 234000 70000	/alues 7500 8 0 1 271000 234000 70000
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 41 1200 2 0 1 271000 202000 70000	b: Design 2 2500 3 0 1 271000 202000 70000	271000 70000	Dependent V 6000 6 0 1 271000 234000 70000	/alues 7500 8 0 1 271000 234000 70000
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required Front-end Loaders Required	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 41 1200 2 0 1 271000 202000 70000 1	Design 2 2500 3 0 1 271000 202000 70000 1 1	271000 202000 202000 202000	Dependent V 6000 6 0 1 271000 234000 70000 234000 70000	/alues 7500 8 0 1 271000 234000 70000 3
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required Front-end Loaders Required Compactors Required	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 41 1200 2 0 1 271000 202000 70000 1 1 1	Design 2 2500 3 0 1 271000 202000 70000 1 1 1 1 1	271000 202000 70000 22 1	Dependent V 6000 6 0 1 271000 234000 70000 70000 22 2 2	/alues 7500 8 0 1 271000 234000 70000 70000 3 3 2
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required Front-end Loaders Required Tront-end Loaders Required	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 41 1200 2 0 1 271000 202000 70000 1 1 1 1 1 1 1 1 1	b: Design 2 2500 3 0 1 271000 202000 70000 1 1 1 2	Capacity I 4500 4 0 1 271000 202000 70000 70000 202000 70000 70000	Dependent V 6000 6 0 1 271000 234000 70000 2 2 2 4	/alues 7500 8 0 1 271000 234000 70000 70000 3 2 3 2 5
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Operator Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required Front-end Loaders Required Clam-shell Crane Required Front-end Loaders Required Backhoes Required	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 41 1200 2 0 1 271000 202000 70000 1 1 1 1 1 1	b: Design 2 2500 3 0 1 271000 202000 70000 1 1 1 2	271000 202000 70000 22 1 3 3	Dependent V 6000 6 0 1 271000 234000 70000 70000 2 2 2 4	/alues 7500 8 0 1 271000 234000 70000 70000 3 2 5 5
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Operator Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required Front-end Loaders Required Clam-shell Crane Required Front-end Loaders Required Front-end Loaders Required Fibrous Content Material	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 41 1200 2 0 1 271000 202000 70000 1 1 1	b: Design 2 2500 3 0 1 271000 202000 70000 1 1 2	271000 202000 70000 22 202000 70000	Dependent V 6000 6 0 1 271000 234000 70000 2 2 4	/alues 7500 8 0 1 271000 234000 70000 3 2 3 2 5 5
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required Front-end Loaders Required Clam-shell Crane Required Fiort-end Loaders Required Fiort-end Loaders Required Fiores Required Fibrous Content Material Fibrous Content Material Capacity	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 41 1200 2 0 1 271000 202000 70000 1 1 1 250	b: Design 2 2500 3 0 1 271000 202000 70000 1 1 2 500	Capacity I 4500 4 0 1 271000 202000 70000 70000 2 2 1 3 3 900	Dependent V 6000 6 0 1 271000 234000 70000 2 2 4 1200	/alues 7500 8 0 1 271000 234000 70000 3 3 2 5 5 5 1500
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required Front-end Loaders Required Clam-shell Crane Required Front-end Loaders Required Front-end Loaders Required Fiorous Content Material Fibrous Content Material Capacity Loader Operator	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 41 1200 2 0 1 271000 202000 70000 1 1 1 250 0.1	b: Design 2 2500 3 0 1 271000 202000 70000 1 1 1 2 500 0.1	Capacity I 4500 4 0 1 271000 202000 70000 70000 202000 70000 70000 70000 900 0.25	Dependent V 6000 6 0 1 271000 234000 70000 2 2 4 1200 0.25	/alues 7500 8 0 1 271000 234000 70000 70000 3 3 2 5 5 5 5 1500 0.25
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required Front-end Loaders Required Clam-shell Crane Required Front-end Loaders Required Fiorous Content Material Fibrous Content Material Capacity Loader Operator Front-end Loader	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 41 1200 2 0 1 271000 202000 70000 1 1 1 1 250 0.1 271000	b: Design 2 2500 3 0 1 271000 202000 70000 1 1 1 2 500 0.1 271000	Capacity I 4500 4 0 1 271000 202000 70000 70000 202000 70000 70000 70000 70000 900 0.25 271000	Dependent V 6000 6 0 1 271000 234000 70000 2 2 4 2 4 1200 0.25 271000	/alues 7500 8 0 1 271000 234000 70000 70000 3 3 2 5 5 5 5 5 5 5 5 22 1500 0.25 2711000
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required Front-end Loaders Required Clam-shell Crane Required Fibrous Content Material Fibrous Content Material Capacity Loader Operator Front-end Loaders Required	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 41 1200 2 0 1 271000 202000 70000 1 1 1 1 250 0.1 271000 0.25	b: Design 2 2500 3 0 1 271000 202000 70000 70000 1 1 2 500 0.1 271000 0.25	Capacity I 4500 4 0 1 271000 202000 70000 70000 202000 70000 70000 202000 70000 202000 70000 202000 70000 0.25 271000 0.25	Dependent V 6000 6 0 1 271000 234000 70000 70000 2 2 4 1200 0.25 271000 0.5	/alues 7500 8 0 1 271000 234000 70000 70000 3 3 2 5 5 5 5 5 1500 0.25 271000 0.5
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required Front-end Loaders Required Clam-shell Crane Required Fibrous Content Material Fibrous Content Material Capacity Loader Operator Front-end Loaders Required	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 41 1200 2 0 1 271000 202000 70000 1 1 1 1 250 0.1 271000 0.25	b: Design 2 2500 3 0 1 271000 202000 70000 70000 1 1 2 500 0.1 271000 0.25	Capacity I 4500 4 0 1 271000 202000 70000 70000 202000 70000 70000 202000 70000 202000 70000 202000 70000 0.25 271000 0.25	Dependent V 6000 6 0 1 271000 234000 70000 70000 2 2 4 1200 0.25 271000 0.5	/alues 7500 8 0 1 271000 234000 70000 70000 3 3 2 5 5 5 5 5 5 271000 0.25 271000 0.5
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required Front-end Loaders Required Clam-shell Crane Required Fibrous Content Material Fibrous Content Material Capacity Loader Operator Front-end Loaders Required	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 41 1200 2 0 1 271000 202000 70000 1 1 1 1 250 0.1 271000 0.25 5.5	b: Design 2 2500 3 0 1 271000 202000 70000 70000 1 1 1 2 500 0.1 271000 0.25 5.5	Capacity I 4500 4 0 1 271000 202000 70000 70000 202000 70000 202000 70000 202000 70000 202000 70000 0.25 271000 0.25 271000 0.25	Dependent V 6000 6 0 1 271000 234000 70000 2 2 2 4 1200 0.25 271000 0.5 5.5	/alues 7500 8 0 1 271000 234000 70000 70000 3 3 2 5 5 5 5 5 271000 0.25 271000 0.5
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required Front-end Loaders Required Clam-shell Crane Required Fibrous Content Material Fibrous Content Material Capacity Loader Operator Front-end Loaders Required	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 41 1200 2 0 1 271000 202000 70000 1 1 1 1 250 0.1 271000 0.25 5.5 4	b: Design 2 2500 3 0 1 271000 202000 70000 70000 1 1 1 2 500 0.1 271000 0.25 5.5 4 1	Capacity I 4500 4 0 1 271000 202000 70000 70000 202000 70000	Dependent V 6000 6 0 1 271000 234000 70000 234000 70000 2 2 4 4 1200 0.25 271000 0.5 5.5 4 1	/alues 7500 8 0 1 271000 234000 70000 70000 3 3 2 5 5 5 5 5 5 5 5 271000 0.25 271000 0.5 4

*default values for equipment from CAT Handbook [9]

Recyclables		Table 4	c: Design 3	Capacity I	Dependent	Values
Commingled Recyclables Capacity	CYPD	1200	2500	4500	6000	7500
Loader Operator	persons	2	3	4	5	6
Compactor Operator	persons	0	0	0	0	0
Laborer	persons	1	1	1	1	1
Compactor	\$					
Hopper	\$					
Front-end Loader	\$					
Clam-shell Crane	\$					
Scale(for tractor trailer)	\$	70000	70000	70000	70000	70000
Backhoe	\$	86300	86300	86300	86300	86300
Compactors Required	#					
Hoppers Required	#					
Front-end Loaders Required	#					
Clam-shell Crane Required	#					
Tr.Tr. Scales Required	#	1	2	3	4	5
Backhoes Required	#	1	2	3	4	5
Fibrous Content Material						
Fibrous Content Material Capacity	CYPD	250	500	900	1200	1500
Loader Operator	persons	0.1	0.1	0.25	0.25	0.25
Front-end Loader	\$	271000	271000	271000	271000	271000
Front-end Loader Required	#	0.25	0.25	0.25	0.5	0.5
Energy Usage						
Front-end Loader	gal/hour	5.5	5.5	5.5	5.5	5.5
Clam-shell Crane	gal/hour	4	4	5.75	5.75	5.75
Backhoe	gal/hour	1.9	1.9	1.9	1.9	1.9
	-					
Recyclables		Table 4c	l: Design 4	Capacity	Dependent	Values
Recyclables Facility Capacity	CYPD	Table 40 1200	1: Design 4 2500	Capacity 4500	Dependent 6000	Values 7500
Recyclables Facility Capacity Loader Operator	CYPD persons	Table 40 1200 1	1: Design 4 2500 2	Capacity 4500 3	Dependent 6000 4	Values 7500 5
Recyclables Facility Capacity Loader Operator Compactor Operator	CYPD persons persons	Table 40 1200 1 1	d: Design 4 2500 2 2	Capacity 4500 3 3	Dependent 6000 4 4	Values 7500 5 5
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer	CYPD persons persons persons	Table 40 1200 1 1 1 1	d: Design 4 2500 2 2 1	Capacity 4500 3 3 1	Dependent 6000 4 4 1	Values 7500 5 5 1
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor	CYPD persons persons persons \$	Table 40 1200 1 1 1 35000	d: Design 4 2500 2 2 1 35000	Capacity 4500 3 3 1 35000	Dependent 6000 4 4 1 35000	Values 7500 5 5 1 35000
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper	CYPD persons persons persons \$ \$	Table 40 1200 1 1 35000 20000	d: Design 4 2500 2 2 1 35000 20000	Capacity 4500 3 3 1 35000 20000	Dependent 6000 4 4 1 35000 20000	Values 7500 5 5 1 35000 20000
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader	CYPD persons persons persons \$ \$ \$	Table 40 1200 1 1 35000 20000 175700	Design 4 2500 2 2 1 35000 20000 175700	Capacity 4500 3 1 35000 20000 175700	Dependent 6000 4 1 35000 20000 175700	Values 7500 5 1 35000 20000 175700
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane	CYPD persons persons persons \$ \$ \$ \$ \$ \$ \$ \$	Table 40 1200 1 1 35000 20000 175700	Design 4 2500 2 2 1 35000 20000 175700	Capacity 4500 3 1 35000 20000 175700	Dependent 6000 4 1 35000 20000 175700	Values 7500 5 1 35000 20000 175700
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer)	CYPD persons persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 40 1200 1 1 35000 20000 175700	d: Design 4 2500 2 2 1 35000 20000 175700	Capacity 4500 3 1 35000 20000 175700	Dependent 6000 4 1 35000 20000 175700	Values 7500 5 1 35000 20000 175700
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 40 1200 1 1 35000 20000 175700	d: Design 4 2500 2 1 35000 20000 175700	Capacity 4500 3 1 35000 20000 175700	Dependent 6000 4 1 35000 20000 175700	Values 7500 5 1 35000 20000 175700
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 40 1200 1 1 35000 20000 175700 1 1	d: Design 4 2500 2 1 35000 20000 175700 2 2	Capacity 4500 3 1 35000 20000 175700 	Dependent 6000 4 1 35000 20000 175700 4	Values 7500 5 1 35000 20000 175700
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 40 1200 1 1 35000 20000 175700 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	d: Design 4 2500 2 1 35000 20000 175700 2 2 2 2 2 2 2 2 2 2 2 2 2	Capacity 4500 3 1 35000 20000 175700 175700 3 3 3	Dependent 6000 4 1 35000 20000 175700 4 4 4 4	Values 7500 5 1 35000 20000 175700 175700 5 5 5
Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 40 1200 1 1 35000 20000 175700 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	d: Design 4 2500 2 1 35000 20000 175700 2 2 2 2 2 2 2 2 2 2 2 2 2	Capacity 4500 3 1 35000 20000 175700 175700 3 3 3 3 3	Dependent 6000 4 1 35000 20000 175700 4 4 4 4 4 4	Values 7500 5 1 35000 20000 175700 175700 5 5 5 5
Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required Front-end Loaders Required	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 4c 1200 1 1 35000 20000 175700 1 1 1 1 1 1 1 1 1 1 1 1 1 1	d: Design 4 2500 2 1 35000 20000 175700 2 2 2 2 2 2 2 2 2 2	Capacity 4500 3 1 35000 20000 175700 175700 3 3 3 3 3	Dependent 6000 4 1 35000 20000 175700 4 4 4 4 4 4	Values 7500 5 1 35000 20000 175700 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required Front-end Loaders Required Trons Required	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 4c 1200 1 1 35000 20000 175700 1 1 1 1 1 1 1	d: Design 4 2500 2 1 35000 20000 175700 2 2 2 2 2 2 2 2	Capacity 4500 3 1 35000 20000 175700 7 7 3 3 3 3 3 3	Dependent 6000 4 1 35000 20000 175700 4 4 4 4 4 4	Values 7500 5 1 35000 20000 175700 5 5 5 5 5 5 5 5
Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required Front-end Loaders Required Tronse Required Backhoe Compactors Required Front-end Loaders Required Facility Capacity Backhoe Hoppers Required Front-end Loaders Required Backhoes Required	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 4c 1200 1 1 35000 20000 175700 1 1 1 1 1 1 1	d: Design 4 2500 2 1 35000 20000 175700 2 2 2 2 2 2 2	Capacity 4500 3 1 35000 20000 175700 3 3 3 3 3 3	Dependent 6000 4 1 35000 20000 175700 4 4 4 4 4 4	Values 7500 5 1 35000 20000 175700 5 5 5 5 5 5 5
Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required Front-end Loaders Required Tronshell Crane Required Front-end Loaders Required Front-end Loaders Required Fibrous Content Material	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 4c 1200 1 1 35000 20000 175700 1 1 1 1 1 1 1	d: Design 4 2500 2 1 35000 20000 175700 2 2 2 2 2 2 2	Capacity 4500 3 1 35000 20000 175700 3 3 3 3 3 3 3 3	Dependent 6000 4 1 35000 20000 175700 4 4 4 4 4 4	Values 7500 5 1 35000 20000 175700 5 5 5 5 5 5
Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required Front-end Loaders Required Compactors Required Front-end Loaders Required Fiorent-End Loaders Required Fibrous Content Material Fibrous Content Material Capacity	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 4c 1200 1 1 35000 20000 175700 1 1 1 1 20000 175700	d: Design 4 2500 2 1 35000 20000 175700 2 2 2 2 2 2 2 500	Capacity 4500 3 1 35000 20000 175700 7 7 3 3 3 3 3 3 3 3 3 900	Dependent 6000 4 1 35000 20000 175700 4 4 4 4 1 2000 1200	Values 7500 5 1 1 35000 20000 175700 5 5 5 5 5 5 1 1 1500
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required Front-end Loaders Required Clam-shell Crane Required Fiorn-end Loaders Required Fiores Required Fiores Required Fibrous Content Material Fibrous Content Material Capacity Loader Operator	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 4c 1200 1 1 35000 20000 175700 1 1 1 1 20000 175700 20000 20000 175700 20000 1 1 250 0.1	d: Design 4 2500 2 1 35000 20000 175700 2 2 2 2 2 2 2 2 500 0.1	Capacity 4500 3 1 35000 20000 175700 7 7 3 3 3 3 3 3 3 3 3 3 900 0.25	Dependent 6000 4 1 35000 20000 175700 4 4 4 4 4 1200 0.25	Values 7500 5 1 1 35000 20000 175700 5 5 5 5 5 5 1 1 1 1500 0.25
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required Front-end Loaders Required Clam-shell Crane Required Front-end Loaders Required Fiorous Content Material Fibrous Content Material Capacity Loader Operator Front-end Loader	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 4c 1200 1 1 35000 20000 175700 1 1 1 1 20000 175700 250 0.1 271000	d: Design 4 2500 2 1 35000 20000 175700 2 2 2 2 2 2 2 2 2 2 2 2 2	Capacity 4500 3 1 35000 20000 175700 175700 3 3 3 3 3 3 3 3 3 3 3 900 0.25 271000	Dependent 6000 4 1 35000 20000 175700 4 4 4 4 4 1200 0.25 271000	Values 7500 5 1 1 35000 20000 175700 175700 5 5 5 5 5 5 1 1 1500 0.25 271000
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required Front-end Loaders Required Clam-shell Crane Required Front-end Loaders Required Fort-end Loaders Required Fibrous Content Material Fibrous Content Material Capacity Loader Operator Front-end Loader	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 4c 1200 1 1 35000 20000 175700 1 1 1 1 1 1 250 0.1 271000 0.25	d: Design 4 2500 2 1 35000 20000 175700 2 2 2 2 2 2 2 2 2 2 2 2 2	Capacity 4500 3 1 35000 20000 175700 175700 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Dependent 6000 4 1 35000 20000 175700 4 4 4 4 4 1200 0.25 271000 0.5	Values 7500 5 1 1 35000 20000 175700 175700 5 5 5 5 5 5 5 1 1500 0.25 271000 0.5
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required Front-end Loaders Required Clam-shell Crane Required Fiorent Required Front-end Loaders Required Fibrous Content Material Fibrous Content Material Capacity Loader Operator Front-end Loaders Required	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 4c 1200 1 1 35000 20000 175700 1 1 1 1 1 1 20000 175700 20000 175700 20000 1 1 250 0.1 271000 0.25	d: Design 4 2500 2 1 35000 20000 175700 2 2 2 2 2 2 2 2 2 2 2 2 2	Capacity 4500 3 1 35000 20000 175700 175700 3 3 3 3 3 3 3 3 3 3 3 3 3	Dependent 6000 4 1 35000 20000 175700 4 4 4 4 4 1200 0.25 271000 0.5	Values 7500 5 1 1 35000 20000 175700 5 5 5 5 5 5 1 1 1 1500 0.25 271000 0.5
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required Front-end Loaders Required Clam-shell Crane Required Front-end Loaders Required Fibrous Content Material Fibrous Content Material Capacity Loader Operator Front-end Loaders Required Energy Usage Front-end Loader	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table 4c 1200 1 1 35000 20000 175700 1 1 1 1 1 1 1 250 0.1 271000 0.25 5.5	d: Design 4 2500 2 1 35000 20000 175700 2 2 2 2 2 2 2 2 2 500 0.1 271000 0.25 5.5	Capacity 4500 3 1 35000 20000 175700 175700 3 3 3 3 3 3 3 3 3 3 3 3 3	Dependent 6000 4 1 35000 20000 175700 4 4 4 4 4 4 1200 0.25 271000 0.5 5.5	Values 7500 5 1 35000 20000 175700 15700 5 5 5 5 5 1 1500 0.25 271000 0.5 5.5
Recyclables Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Clam-shell Crane Scale(for tractor trailer) Backhoe Compactors Required Hoppers Required Front-end Loaders Required Clam-shell Crane Required Firont-end Loaders Required Fibrous Content Material Fibrous Content Material Capacity Loader Operator Front-end Loaders Required Energy Usage Front-end Loader Clam-shell Crane	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	250 0.1 1 35000 20000 175700 1 1 1 1 1 250 0.1 271000 0.25 5.5	Besign 4 2500 2 1 35000 20000 175700 2 2 2 2 2 2 2 35000 0.1 271000 0.25 5.5	Capacity 4500 3 1 35000 20000 175700 175700 3 3 3 3 3 3 3 3 3 3 3 3 3	Dependent 6000 4 1 35000 20000 175700 4 4 4 4 4 4 4 5.5 5.5	Values 7500 5 1 1 35000 20000 175700 5 5 5 5 5 1 1500 0.25 271000 0.5 5.5

Tables 4a-e: Capacity Dependent Values Utilize

*default values for equipment from CAT Handbook [9]

Recyclables			Table 4e: Design 5 Capacity Dependent Values				
CYPD	1200	2500	4500	6000	7500		
persons	1	2	3	4	5		
persons	1	2	3	4	5		
persons	1	1	1	1	1		
\$	35000	35000	35000	35000	35000		
\$	20000	20000	20000	20000	20000		
\$							
\$							
\$							
\$	86300	86300	86300	86300	86300		
#	1	2	2	4	5		
#	1	2	2	4	5		
#							
#							
#							
#	1	2	3	4	5		
CYPD	250	500	900	1200	1500		
persons	0.1	0.1	0.25	0.25	0.25		
\$	271000	271000	271000	271000	271000		
#	0.25	0.25	0.25	0.5	0.5		
gal/hour	5.5	5.5	5.5	5.5	5.5		
gal/hour							
gal/hour	1.9	1.9	1.9	1.9	1.9		
	CYPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Table CYPD 1200 persons 1 persons 1 persons 1 \$ 35000 \$ 20000 \$ 20000 \$ 20000 \$ 20000 \$ 20000 \$ 20000 \$ 20000 \$ 20000 \$ 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 gal/hour 5.5 gal/hour 5.5 gal/hour 1.9	Table 4e: Design CYPD 1200 2500 persons 1 2 persons 1 2 persons 1 1 \$ 35000 35000 \$ 20000 20000 \$ 20000 20000 \$ 20000 20000 \$ 20000 20000 \$ 20000 20000 \$ 20000 20000 \$ 20000 20000 \$ 20000 20000 \$ 20000 20000 \$ 20000 20000 \$ 86300 86300 # 1 2 # 1 2 # 1 2 CYPD 250 500 persons 0.1 0.1 \$ 271000 271000 # 0.25 0.25 gal/hour 5.5 5.5 gal/hour 1.9 1.9	Table 4e: Design 5 Capacity CYPD 1200 2500 4500 persons 1 2 3 persons 1 2 3 persons 1 2 3 persons 1 1 1 \$ 35000 35000 35000 \$ 20000 20000 20000 \$ 20000 20000 20000 \$ 20000 20000 20000 \$ 20000 20000 20000 \$ 20000 20000 20000 \$ 20000 20000 20000 \$ 20000 20000 20000 \$ 86300 86300 86300 # 1 2 2 # 1 2 3 # 1 2 3 CYPD 250 500 900 persons 0.1 0.1 0.25 <td>Table 4e: Design 5 Capacity Dependen CYPD 1200 2500 4500 6000 persons 1 2 3 4 persons 1 2 3 4 persons 1 1 1 1 \$ 35000 35000 35000 35000 \$ 20000 20000 20000 20000 \$ 20000 20000 20000 20000 \$ 20000 20000 20000 20000 \$ 20000 20000 20000 20000 \$ 0 0 1 1 1 \$ 86300 86300 86300 86300 # 1 2 2 4 # 1 2 3 4 # 1 2 3 4 # 1 2 3 4 # 1 2 3 4</td>	Table 4e: Design 5 Capacity Dependen CYPD 1200 2500 4500 6000 persons 1 2 3 4 persons 1 2 3 4 persons 1 1 1 1 \$ 35000 35000 35000 35000 \$ 20000 20000 20000 20000 \$ 20000 20000 20000 20000 \$ 20000 20000 20000 20000 \$ 20000 20000 20000 20000 \$ 0 0 1 1 1 \$ 86300 86300 86300 86300 # 1 2 2 4 # 1 2 3 4 # 1 2 3 4 # 1 2 3 4 # 1 2 3 4		

Tables 4a-e: Capacity Dependent Values Utilize

Table 1: TR3 Default Values Resulting from Linear Regressions

Cost		Mixed Refuse	Recyclables	FCM
		\$/TPD	\$/CYPD	\$/CYPD
Rolling Stock Cost	RS_cost	769	219	99
Compactor and HopperCost	COMP_cost	178	51	

Equipment Operator		hour/day-TPD	hour/day- CYPD	hour/day- CYPD
Equipment Operator Requirement	op_req	0.069	0.020	0.003

				gallon/cubic	gallon/cubic
Ener	gy		gallon/ton	yard	yard
Ī	Rolling Stock Fuel Use	rs_e	0.112	0.032	0.002

				lb/cubic
Emissions		lb/ton	lb/cubic yard	yard
Particulates (PM10)	pm10_rs_c	0.00	0.00	0.000
Total Particulates	pm_rs_c	0.009	0.003	0.001
Nitrogen Oxides	no_rs_c	0.112	0.032	0.013
Hydrocarbons (non CH4)	hc_rs_c	0.011	0.003	0.001
Sulfur Oxides	SO_rS_C	0.009	0.002	0.001
Carbon Monoxide	co_rs_c	0.034	0.010	0.003
CO2 (biomass)	co2_bm_rs_c	0.000	0.000	0.000
CO2 (non biomass)	co2_rs_c	2.566	0.731	0.046
Ammonia	a_nh3_rs_c	0.000	0.000	0.000
Lead	a_pb_rs_c	0.000	0.000	0.000
Methane	ch4_rs_c	0.000	0.000	0.000
Hydrochloric acid	hlc_rs_c	0.000	0.000	0.000

Cost	Mixed Refuse	Recyclables	FCM
Rolling Stock Cost	0.90	0.88	0.44
Compactor and HopperCost	0.98	0.99	
Operator Labor Requirement	0.90	0.88	0.53
Energy		•	•
Rolling Stock Fuel Use	0.90	0.88	0.44
Emissions			
Particulates (PM10)	1.00	1.00	1.00
Total Particulates	0.90	0.88	0.44
Nitrogen Oxides	0.90	0.88	0.44
Hydrocarbons (non CH4)	0.90	0.88	0.44
Sulfur Oxides	0.90	0.88	0.44
Carbon Monoxide	0.90	0.88	0.44
CO2 (biomass)	1.00	1.00	1.00
CO2 (non biomass)	1.00	1.00	1.00
Ammonia	1.00	1.00	1.00
Lead	1.00	1.00	1.00
Methane	1.00	1.00	1.00
Hvdrochloric acid	1.00	1.00	1.00

Table 2: TR3 r-squared Values for Linear Regressions

Table 3: General Input Values Utilized in Linear Regressions

Operating Hours		Mixed Refuse	Recyclables	FCM
Working Day Length	hours/day	8	8	8
Effective Working Day Length	hours/day	7	7	7
Number of workdays per year	days	260	260	260
CO2 Emissions	lbs/gallon	23.005	23.005	23.005

Table 4: Capacity Dependent Values Utilized in Linear Regressions*

MR and Rec. Facility Capacity	TPD	350	750	1200	1800	2100
MR and Rec. Facility Capacity	CYPD	1400	3000	4800	7200	8400
FCM Facility Capacity	CYPD	250	500	900	1200	1500
MR and Rec. Equipment Operator	persons	3	6	9	12	12
Compactor Operator	persons	1	2	3	4	4
FCM Equipment Operator	persons	0.25	0.25	0.25	0.5	0.5
Compactor Unit Cost	\$	35000	35000	35000	35000	35000
Hopper Unit Cost	\$	40000	40000	40000	40000	40000
Front-end Loader Unit Cost	\$	271000	271000	271000	271000	271000
Backhoe Unit Cost	\$	86300	86300	86300	86300	86300
Compactors Required	#	1	2	3	4	5
Hoppers Required	#	1	2	3	4	5
MR and Rec. Front-end Loaders Required	#	1	2	3	4	4
MR and Rec. Backhoes Required	#	1	2	3	4	4
FCM Front-end Loader Required	#	0.25	0.25	0.25	0.5	0.5

Energy Usage

Front-end Loader	gal/hour	5.5	5.5	5.5	5.5	5.5
Backhoe	gal/hour	1.9	1.9	1.9	1.9	1.9
	II [0]					

*default values for equipment from CAT Handbook [9]

TR4-Seprt. Cpt. Co-Collection

Table 1: TR4 Default Values Resulting from Linear Regressions						
Cos	st		Mixed Refuse	Recyclables	FCM	
			\$/TPD	\$/CYPD	\$/CYPD	
	Rolling Stock Cost	RS_cost	769	219	99	
	Compactor and HopperCost	COMP_cost	178	51		

Equipment Operator		hour/day- TPD	hour/day- CYPD	hour/day- CYPD
Equipment Operator Requirement	op_req	0.069	0.020	0.003
		-		

Energy		gallon/ton	gallon/cubic yard	gallon/cubi c yard
Rolling Stock Fuel Use	rs_e	0.112	0.032	0.002

				lb/cubic
Emissions		lb/ton	lb/cubic yard	yard
Particulates (PM10)	pm10_rs_c	0.00	0.00	0.000
Total Particulates	pm_rs_c	0.009	0.003	0.001
Nitrogen Oxides	no_rs_c	0.112	0.032	0.013
Hydrocarbons (non CH4)	hc_rs_c	0.011	0.003	0.001
Sulfur Oxides	so_rs_c	0.009	0.002	0.001
Carbon Monoxide	co_rs_c	0.034	0.010	0.003
CO2 (biomass)	co2_bm_rs_c	0.000	0.000	0.000
CO2 (non biomass)	co2_rs_c	2.566	0.731	0.046
Ammonia	a_nh3_rs_c	0.000	0.000	0.000
Lead	a_pb_rs_c	0.000	0.000	0.000
Methane	ch4_rs_c	0.000	0.000	0.000
Hydrochloric acid	hlc_rs_c	0.000	0.000	0.000

Mixed Refuse FCM

			-
Rolling Stock Cost	0.90	0.88	0.44
Compactor and HopperCost	0.98	0.99	
Operator Labor Requirement	0.90	0.88	0.53
Energy			
Rolling Stock Fuel Use	0.90	0.88	0.44
Emissions			
Particulates (PM10)	1.00	1.00	1.00
Total Particulates	0.90	0.88	0.44
Nitrogen Oxides	0.90	0.88	0.44
Hydrocarbons (non CH4)	0.90	0.88	0.44
Sulfur Oxides	0.90	0.88	0.44
Carbon Monoxide	0.90	0.88	0.44
CO2 (biomass)	1.00	1.00	1.00
CO2 (non biomass)	1.00	1.00	1.00
Ammonia	1.00	1.00	1.00
Lead	1.00	1.00	1.00
Methane	1.00	1.00	1.00
Hydrochloric acid	1.00	1.00	1.00

Table 3: General Input Values Utilized in Linear Regressions

Operating Hours		Mixed Refuse	Recyclables
Working Day Length	hours/day	8	8
Effective Working Day Length	hours/day	7	7
Number of workdays per year	days	260	260
CO2 Emissions	lbs/gallon	23.005	23.005

FCM 8 7 260 23.005

Table 4: Capacity Dependent Values Utilized in Linear Regressions*

MR and Rec. Facility Capacity	TPD	350	750	1200	1800	2100
MR and Rec. Facility Capacity	CYPD	1400	3000	4800	7200	8400
FCM Facility Capacity	TPD	250	500	900	1200	1500
MR and Rec. Equipment Operator	persons	3	6	9	12	12
Compactor Operator	persons	1	2	3	4	4
FCM Equipment Operator	persons	0.25	0.25	0.25	0.5	0.5
Compactor Unit Cost	\$	35000	35000	35000	35000	35000
Hopper Unit Cost	\$	40000	40000	40000	40000	40000
Front-end Loader Unit Cost	\$	271000	271000	271000	271000	271000
Backhoe Unit Cost	\$	86300	86300	86300	86300	86300
Compactors Required	#	1	2	3	4	5
Hoppers Required	#	1	2	3	4	5
MR and Rec. Front-end Loaders Required	#	1	2	3	4	4
MR and Rec. Backhoes Required	#	1	2	3	4	4
FCM Font-end Loaders Required	#	0.25	0.25	0.25	0.5	0.5

Energy Usage

Front-end Loader	gal/hour	5.5	5.5	5.5	5.5	5.5
Backhoe	gal/hour	1.9	1.9	1.9	1.9	1.9
'default values for equipment from CAT Handbook [9]						

A-25

Table 1: TR5 Default Values Resulting from Linear Regression Cost Design 1

			V	
	Rolling Stock Cost	RS_cost	\$/CYPD	28
	Equipment Operator Requiremen	COMP_cost	hour/day-CYPD	0.0026
Er	nergy			
	Rolling Stock Fuel Use	rs_e	gallon/CY	0.0044

Emissions

Particulates (PM10)	pm10_rs_c	lb/CY	0.000
Total Particulates	pm_rs_c	lb/CY	0.001
Nitrogen Oxides	no_rs_c	lb/CY	0.006
Hydrocarbons (non CH4)	hc_rs_c	lb/CY	0.001
Sulfur Oxides	so_rs_c	lb/CY	0.000
Carbon Monoxide	co_rs_c	lb/CY	0.002
CO2 (biomass)	co2_bm_rs_c	lb/CY	0.000
CO2 (non biomass)	co2_rs_c	lb/CY	0.100
Ammonia	a_nh3_rs_c	lb/CY	0.000
Lead	a_pb_rs_c	lb/CY	0.000
Methane	ch4_rs_c	lb/CY	0.000
Hydrochloric acid	hlc_rs_c	lb/CY	0.000

Table 2: TR5 r-squared Values for Linear Regressions Cost Design 1

	Rolling Stock Cost	\$/CYPD	0.73
	Equipment Operator Requiremen	hour/day-CYPE	0.73
En	ergy		
	Rolling Stock Fuel Use	gallon/CY	0.73
En	nissions		
	Particulates (PM10)	lb/CY	1.00
	Total Particulates	lb/CY	0.73
	Nitrogen Oxides	lb/CY	0.73
	Hydrocarbons (non CH4)	lb/CY	0.73
	Sulfur Oxides	lb/CY	0.73
	Carbon Monoxide	lb/CY	0.73
	CO2 (biomass)	lb/CY	1.00
	CO2 (non biomass)	lb/CY	1.00
	Ammonia	lb/CY	1.00
	Lead	lb/CY	1.00
	Methane	lb/CY	1.00
	Hydrochloric acid	lb/CY	1.00

Table 3: General Input Values Utilized in Linear Regressions Operating Hours

Working Day Length	hours/da
Effective Working Day Length	hours/da
Number of workdays per year	days
CO2 Emissions	lbs/gallor

ours/day	8
ours/day	7
ays	260
os/gallon	23.005
TR5-Pre-Sorted Recyclables

Table 4: Capacity Dependent Values Utilized in Linear Regressions*

					Design 1		
Facility Capacity	CYPD	fac_cap	1504	3008	4511	7519	9023
Loader Operator	persons	load_op	1	1	2	2	3
Backhoe	\$	bh_c	86300	86300	86300	86300	86300
Backhoes Required	#	bh_q	1	1	2	2	3
Backhoe	gal/hour	bh_e	1.9	1.9	1.9	1.9	1.9

*default values for equipment from CAT Handbook [9]

Co	ost			Design 1	Design 2
	Rolling Stock Cost	RS_cost	\$/TPD	640	395
	Compactor and HopperCost	COMP_cost	\$/TPD		935
	Operator Labor Requirement	op_req	hour/day-TP	0.034	0.025
Er	ergy				
	Rollina Stock Fuel Use	rs e	gallon/ton	0.127	0.08

Table 1: RT1 Default Values Resulting from Linear Regressions

Emissions

Particulates (PM10)	pm10_rs_c	lb/ton	0.000	0.000
Total Particulates	pm_rs_c	lb/ton	0.008	0.005
Nitrogen Oxides	no_rs_c	lb/ton	0.103	0.073
Hydrocarbons (non CH4)	hc_rs_c	lb/ton	0.007	0.005
Sulfur Oxides	so_rs_c	lb/ton	0.009	0.006
Carbon Monoxide	co_rs_c	lb/ton	0.026	0.018
CO2 (biomass)	co2_bm_rs_c	lb/ton	0.000	0.000
CO2 (non biomass)	co2_rs_c	lb/ton	2.928	1.854
Ammonia	a_nh3_rs_c	lb/ton	0.000	0.000
Lead	a_pb_rs_c	lb/ton	0.000	0.000
Methane	ch4_rs_c	lb/ton	0.000	0.000
Hydrochloric acid	hlc_rs_c	lb/ton	0.000	0.000

Table 2: RT1 r-squared Values for Linear Regressions

Сс	ost		Design 1	Design 2
	Rolling Stock Cost	\$/TPD	0.77	0.77
	Compactor and HopperCost	\$/TPD		0.93
	Operator Labor Requirement	hour/day-TPD	0.88	0.84
En	ergy			
	Rolling Stock Fuel Use	gallon/ton	0.87	0.77

Emissions

Particulates (PM10)	lb/ton	1.00	1.00
Total Particulates	lb/ton	0.77	0.77
Nitrogen Oxides	lb/ton	0.77	0.77
Hydrocarbons (non CH4)	lb/ton	0.77	0.77
Sulfur Oxides	lb/ton	0.77	0.77
Carbon Monoxide	lb/ton	0.77	0.77
CO2 (biomass)	lb/ton	1.00	1.00
CO2 (non biomass)	lb/ton	1.00	1.00
Ammonia	lb/ton	1.00	1.00
Lead	lb/ton	1.00	1.00
Methane	lb/ton	1.00	1.00
Hydrochloric acid	lb/ton	1.00	1.00

Table 3: General Input Values Utilized in Linear Regressions Operating Hours

perating Hours			Design 1	Design Z
Working Day Length	hours/day	wh_d	8	8
Effective Working Day Leng	th hours/day	EWh_d	7	7
Number of workdays per year	ar days	ywd	260	260
CO2 Emissions	lbs/gallon		23.005	23.005

Table 4: Capacity Dependent Values Utilized in Linear Regressions

					Design 1		
Facility Capacity	TPD	fac_cap	500	750	1000	1500	1800
Loader Operator	persons	load_op	1	3	4	5	6
Compactor Operator	persons	comp_op	0	0	0	0	0
Laborer	persons	lab_op	1	1	1	1	1
Compactor	\$	comp_c					
Hopper	\$	hop_c					
Front-end Loader	\$	fel_c	271000	271000	271000	271000	271000
Excavator	\$	crn_c	202000	202000	202000	202000	202000
Container Handling Unit	\$	tr_c	55000	55000	55000	55000	55000
Compactors Required	#	comp_q					
Hoppers Required	#	hop_q					
Front-end Loaders Required	#	fel_q	1	1	1	2	2
Excavators Required	#	crn_q	1	1	1	2	2
Container Handling Units Req	#	tr_q	1	1	1	2	2
Energy Usage							
Front-end Loader	gal/hour	fel_e	5.5	5.5	5.5	5.5	5.5
Excavator	gal/hour	crn_e	4	4	5.75	5.75	5.75
Container Handling Unit	gal/hour	tr_e	4	4	4	4	4
					Design 2		
Facility Capacity	TPD	fac_cap	500	750	Design 2 1000	1500	1800
Facility Capacity Loader Operator	TPD persons	fac_cap load_op	500 1	750 2	Design 2 1000 2	1500 4	1800 4
Facility Capacity Loader Operator Compactor Operator	TPD persons persons	fac_cap load_op comp_op	500 1 0	750 2 0	Design 2 1000 2 0	1500 4 0	1800 4 0
Facility Capacity Loader Operator Compactor Operator Laborer	TPD persons persons persons	fac_cap load_op comp_op lab_op	500 1 0 1	750 2 0 1	Design 2 1000 2 0 1	1500 4 0 1	1800 4 0 1
Facility Capacity Loader Operator Compactor Operator Laborer Compactor	TPD persons persons persons \$	fac_cap load_op comp_op lab_op comp_c	500 1 0 1 261000	750 2 0 1 261000	Design 2 1000 2 0 1 261000	1500 4 0 1 261000	1800 4 0 1 261000
Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper	TPD persons persons persons \$ \$	fac_cap load_op comp_op lab_op comp_c hop_c	500 1 0 1 261000 20000	750 2 0 1 261000 20000	Design 2 1000 2 0 1 261000 20000	1500 4 0 1 261000 20000	1800 4 0 1 261000 20000
Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader	TPD persons persons persons \$ \$ \$ \$	fac_cap load_op comp_op lab_op comp_c hop_c fel_c	500 1 0 1 261000 20000 271000	750 2 0 1 261000 20000 271000	Design 2 1000 2 0 1 261000 20000 271000	1500 4 0 1 261000 20000 271000	1800 4 0 1 261000 20000 271000
Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Excavator	TPD persons persons persons \$ \$ \$ \$ \$ \$ \$ \$	fac_cap load_op comp_op lab_op comp_c hop_c fel_c crn_c	500 1 0 1 261000 20000 271000	750 2 0 1 261000 20000 271000	Design 2 1000 2 0 1 261000 20000 271000	1500 4 0 1 261000 20000 271000	1800 4 0 1 261000 20000 271000
Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Excavator Container Handling Unit	TPD persons persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	fac_cap load_op comp_op lab_op comp_c hop_c fel_c crn_c tr_c	500 1 0 1 261000 20000 271000 55000	750 2 0 1 261000 20000 271000 55000	Design 2 1000 2 0 1 261000 20000 271000 55000	1500 4 0 1 261000 20000 271000 55000	1800 4 0 1 261000 20000 271000 55000
Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Excavator Container Handling Unit Compactors Required	TPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	fac_cap load_op comp_op lab_op comp_c hop_c fel_c crn_c tr_c comp_q	500 1 0 1 261000 20000 271000 55000 1	750 2 0 1 261000 20000 271000 55000 2	Design 2 1000 2 0 1 261000 20000 271000 271000 55000 4	1500 4 0 1 261000 20000 271000 55000 5	1800 4 0 1 261000 20000 271000 55000 6
Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Excavator Container Handling Unit Compactors Required Hoppers Required	TPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	fac_cap load_op comp_op lab_op comp_c hop_c fel_c crn_c tr_c comp_q hop_q	500 1 0 1 261000 20000 271000 55000 1 1	750 2 0 1 261000 20000 271000 55000 2 2 2 2	Design 2 1000 2 0 1 261000 20000 271000 271000 55000 4 4	1500 4 0 1 261000 20000 271000 55000 5 5 5	1800 4 0 1 261000 20000 271000 55000 6 6 6
Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Excavator Container Handling Unit Compactors Required Hoppers Required Front-end Loaders Required	TPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	fac_cap load_op comp_op lab_op comp_c hop_c fel_c crn_c tr_c comp_q hop_q fel_q	500 1 0 1 261000 20000 271000 271000 55000 1 1 1 1	750 2 0 1 261000 20000 271000 271000 2 55000 2 2 2 1	Design 2 1000 2 0 1 261000 20000 271000 271000 55000 4 4 4 1	1500 4 0 1 261000 20000 271000 55000 5 5 5 2	1800 4 0 1 261000 20000 271000 555000 6 6 6 2
Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Excavator Container Handling Unit Compactors Required Hoppers Required Front-end Loaders Required Excavators Required	TPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	fac_cap load_op comp_op lab_op comp_c hop_c fel_c crn_c tr_c comp_q hop_q fel_q crn_q	500 1 0 1 261000 20000 271000 55000 1 1 1 1	750 2 0 1 261000 20000 271000 271000 255000 2 2 2 1	Design 2 1000 2 0 1 261000 20000 271000 271000 55000 4 4 4 1	1500 4 0 1 261000 20000 271000 55000 5 5 5 2	1800 4 0 1 261000 20000 271000 55000 6 6 6 2
Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Excavator Container Handling Unit Compactors Required Hoppers Required Front-end Loaders Required Excavators Required Container Handling Units Req	TPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	fac_cap load_op comp_op lab_op comp_c hop_c fel_c crn_c tr_c comp_q hop_q fel_q crn_q tr_q	500 1 0 1 261000 20000 271000 55000 1 1 1 1 1	750 2 0 1 261000 20000 271000 271000 2 55000 2 2 2 1 1 1	Design 2 1000 2 0 1 261000 20000 271000 271000 55000 4 4 4 1 1	1500 4 0 1 261000 20000 271000 55000 5 5 5 2 2 2	1800 4 0 1 261000 20000 271000 55000 6 6 6 2 2
Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Excavator Container Handling Unit Compactors Required Hoppers Required Front-end Loaders Required Excavators Required Excavators Required Excavators Required Energy Usage	TPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	fac_cap load_op comp_op lab_op comp_c hop_c fel_c crn_c tr_c comp_q hop_q fel_q crn_q tr_q	500 1 0 1 261000 20000 271000 55000 1 1 1 1 1	750 2 0 1 261000 20000 271000 271000 2 55000 2 2 2 1 1	Design 2 1000 2 0 1 261000 20000 271000 271000 4 4 1 1 1	1500 4 0 1 261000 20000 271000 55000 5 5 5 2 2 2	1800 4 0 1 261000 20000 271000 555000 6 6 6 6 2 2
Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Excavator Container Handling Unit Compactors Required Hoppers Required Front-end Loaders Required Excavators Required Container Handling Units Req Energy Usage Front-end Loader	TPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	fac_cap load_op comp_op lab_op comp_c hop_c fel_c crn_c tr_c comp_q hop_q fel_q crn_q tr_q	500 1 0 1 261000 20000 271000 55000 1 1 1 1 1 1 5.5	750 2 0 1 261000 20000 271000 271000 2 55000 2 2 2 1 1 1 5.5	Design 2 1000 2 0 1 261000 20000 271000 271000 4 4 4 1 1 1 55000 4 1 1 55000	1500 4 0 1 261000 20000 271000 55000 5 5 5 2 2 2 2 2 2	1800 4 0 1 261000 271000 271000 6 6 6 6 2 2 2 2 2
Facility Capacity Loader Operator Compactor Operator Laborer Compactor Hopper Front-end Loader Excavator Container Handling Unit Compactors Required Hoppers Required Front-end Loaders Required Excavators Required Container Handling Units Req Energy Usage Front-end Loader Excavator	TPD persons persons \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	fac_cap load_op comp_op lab_op comp_c hop_c fel_c crn_c tr_c comp_q hop_q fel_q crn_q tr_q	500 1 0 1 261000 20000 271000 55000 1 1 1 1 5.5	750 2 0 1 261000 20000 271000 271000 2 55000 2 2 2 1 1 1 5.5	Design 2 1000 2 0 1 261000 20000 271000 271000 4 4 1 1 1 5.5	1500 4 0 1 261000 20000 271000 5 5 5 5 2 2 2 2 2 5.5	1800 4 0 1 261000 20000 271000 55000 6 6 6 6 2 2 2 2 5.5

0.000

0.000

0.000

0.000

0.000

0.000

Table 1: RT2 & RT3 Default Values Resulting from	om Linear Re	gressions
Cost	RT2	RT3

Cost			RIZ	RIS
Rolling Stock Cost	RS_cost	\$/TPD	1329	1329
Operator Labor Requirement	COMP_cost	hour/day-TPD	0.044	0.044
Energy				
Rolling Stock Fuel Use	rs_e	gallon/ton	0.186	0.186
Emissions				
Particulates (PM10)	pm10_rs_c	lb/ton	0.000	0.000
Total Particulates	pm_rs_c	lb/ton	0.008	0.008
Nitrogen Oxides	no_rs_c	lb/ton	0.098	0.098
Hydrocarbons (non CH4)	hc_rs_c	lb/ton	0.005	0.005
Sulfur Oxides	so_rs_c	lb/ton	0.009	0.009
Carbon Monoxide	co_rs_c	lb/ton	0.026	0.026
CO2 (biomass)	co2_bm_rs_c	lb/ton	0.000	0.000
CO2 (non biomass)	co2_rs_c	lb/ton	4.275	4.275
Ammonia	a_nh3_rs_c	lb/ton	0.000	0.000

lb/ton

lb/ton

lb/ton

Table 2: RT2 & RT3 r-squared Values for Linear Regressions

a_pb_rs_c

ch4_rs_c

hlc_rs_c

	•			-
С	ost		RT2	RT3
	Rolling Stock Cost	\$/TPD	0.82	0.82
	Operator Labor Requirement	hour/day-TPD	0.72	0.90
Er	nergy			
	Rolling Stock Fuel Use	gallon/ton	0.84	0.84

Emissions

Lead

Methane

Hydrochloric acid

Particulates (PM10)	lb/ton	1.00	1.00
Total Particulates	lb/ton	0.82	0.82
Nitrogen Oxides	lb/ton	0.82	0.82
Hydrocarbons (non CH4)	lb/ton	0.82	0.82
Sulfur Oxides	lb/ton	0.82	0.82
Carbon Monoxide	lb/ton	0.82	0.82
CO2 (biomass)	lb/ton	1.00	1.00
CO2 (non biomass)	lb/ton	1.00	1.00
Ammonia	lb/ton	1.00	1.00
Lead	lb/ton	1.00	1.00
Methane	lb/ton	1.00	1.00
Hydrochloric acid	lb/ton	1.00	1.00

Table 3: General Input Values Utilized in Linear Regressions

•			-	
Operating Hours			RT2	RT3
Working Day Length	hours/day	wh_d	8	8
Effective Working Day Length	hours/day	EWh_d	7	7
Number of workdays per year	days	ywd	260	260
CO2 Emissions	lbs/gallon		23.005	23.005

Table 4: Capacity Dependent Values Utilized in Linear Regressions*

				RT2		
Facility Capacity	TPD	400	750	1000	1500	1800
Loader Operator	persons	3	3	6	6	9
Laborer	persons	1	1	1	1	1
Tippers	\$	250000	250000	250000	250000	250000
Container handling units	\$	500000	500000	500000	500000	500000
Tractors	\$	80000	80000	80000	80000	80000
Tippers Required	#	1	1	2	2	3
Container handling units Required	#	1	1	2	2	3
Tractors Required	#	1	1	2	2	3
Energy Usage						
Tippers	gal/hour	5.5	5.5	5.5	5.5	5.5
Container handling units	gal/hour	4	4	5.75	5.75	5.75
Tractors	gal/hour	5.5	5.5	5.5	5.5	5.5

				RT3		
Facility Capacity	TPD	400	750	1000	1500	1800
Loader Operator	persons	1	3	6	6	9
Laborer	persons	1	1	1	1	1
Tippers	\$	250000	250000	250000	250000	250000
Container handling units	\$	500000	500000	500000	500000	500000
Tractors	\$	80000	80000	80000	80000	80000
Tippers Required	#	1	1	2	2	3
Container handling units Required	#	1	1	2	2	3
Tractors Required	#	1	1	2	2	3
nergy Usage						
Tippers	gal/hour	5.5	5.5	5.5	5.5	5.5

Tippers	gal/hour	5.5	5.5	5.5	5.5	5.5
Container handling units	gal/hour	4	4	5.75	5.75	5.75
Tractors	gal/hour	5.5	5.5	5.5	5.5	5.5

*default values for equipment from CAT Handbook [9]